scholarly journals Analisis Pemasangan Filter Pasif Untuk Mengurangi Harmonisa Pada Transformator Rectifier Di PT. Indah Kiat Pulp And Paper Perawang

SainETIn ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 59-68
Author(s):  
Rido Rahmadani

The chlor-alkali process is an electrolysis process which plays an important role in the chemical industry such as the pulp industry. The process produces a product in the form of H2 gas, CL2 gas and NaOH (where the source of chloride ion used is NaCl). This electrolysis process requires a dirrect current with a large current  and a low voltage. In this electrolysis process a three phase controlled 12 pulse rectifiers are used which a connected with multi-winding transformers. In the rectifiers process there will be harmonic distortion on the source side of the transformer which can reduce the power quality of the system. To overcome the harmonic problems that occur in the system, an installation analysis of the equipment in the form of a passive single tuned  filter is aimed at reducing harmonic distortion of current and voltage and increasing the power factor (cos φ). From the result of harmonic analysis using ETAP software, after the installation of harmonic filters orde 11, 13 and 23, the harmonic current value (THDI) and harmonic voltage (THDV) has decreased, namely, before the filter installation, THDI value is 6,5% whereas after installation of filters, THDI value becomes 0,98%, thus there is a THDI decrease of 5,52%. Furthermore, for the voltage harmonic value (THDV) before filter installation is 1,48% while after filtering, THDV value becomes 0,26%, thus there is a THDV decrease of 1,22%. From the results of the simulation of the flow of power (load flow analysis), after installation of filters there is an increase in the value of the power factor (cos φ). Namely, before the filter installation, the value of power factor (cos φ) is 0,8 while after the filter installation the value of the power factor (cos φ) to 0,96, thus an increase in the power factor (cos φ) of 16%.   Keywords : harmonic filter, single tuned filter, power factor, transformer rectifier

2018 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Salim Afif ◽  
I W. Sukerayasa ◽  
W. G. Ariastina

Menjangan feeder is a medium-voltage network system which distributes electricity throughout Gilimanuk and some areas in Buleleng. It has 69 distribution substations, which one of them, substation GR088, contributes to the highest value of the total harmonic distortion (THDi). In this research, the effect of harmonic distortions on losses at low voltage system of substation GR088 will be evaluated.The method used in this study is direct measurement of harmonic distortions at each low-voltage costumer whose electricity is generated by substation GR088 at Menjangan Feeder. Software is also used to perform harmonic load flow analysis and simulations. The total value of losses on transformer and low voltage system of substation GR088 Menjangan feeder, in a no-harmonic condition is 1481,7 Watt. On under-harmonic condition, the total value of losses is 1552,5 Watt. Therefore there is a 70,8 Watt difference between the two conditions. At this case, beside the heat created by the harmonic distortion that can affect the performance of transformers, it also cause a quite great value of losses, which is 1,7 kWh per day, or approximately 620 kWh per year. It means the harmonic distortion in substation GR088 can cause PT PLN (Persero) lose Rp.910.018,8 per year.


Load Flow Analysis helps in error free operation of power system and also useful in forecasting the required equipment for expansion of the system. By forecasting the magnitude of the supply required along with effects caused by single or multiple defects in the system and calculating the magnitude of errors, it is very easy to compensate them using various techniques with minimum cost and effort. It means before installation the favorable sites and size of the infrastructure used are determined to maintain the power factor in the system. Here Power Flow Analysis is performed using Newton Raphson method. This method is used in solving power flow studies of various number of busesunder various conditions. In any network there will be undesired rise or drop or dissipation of voltage. Voltage instability decreases the efficiency of the system and also damages the equipment used. Hence voltage instability analysis is performed and magnitude of the instability is calculated and compensated using various techniques. Here we performed Load Flow Analysis on a 5bus system and Voltage Instability Analysis is also performed to the same with necessary outputs.[7]


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8549
Author(s):  
Rudy Gianto

At present, the penetration of wind-driven electric generators or wind power plants (WPPs) in electric power systems is getting more and more extensive. To evaluate the steady state performances of such power systems, developing a valid WPP model is therefore necessary. This paper proposes a new method in modeling the most popular type of WPP, i.e., DFIG (doubly fed induction generator)-based WPP, to be used in power system steady state load flow analysis. The proposed model is simple and derived based on the formulas that calculate turbine mechanical power and DFIG power. The main contribution of the paper is that, in contrast to the previous models where the DFIG power factor has been assumed to be constant at unity, the constant voltage model proposed in this paper allows the power factor to vary in order to keep the voltage at the desired value. Another important contribution is that the proposed model can be implemented in both sub-synchronous and super-synchronous conditions (it is to be noted that most of the previous models use two different mathematical models to represent the conditions). The case study is also presented in the present work, and the results of the study confirm the validity of the proposed DFIG model.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3173 ◽  
Author(s):  
Giovanni Artale ◽  
Giuseppe Caravello ◽  
Antonio Cataliotti ◽  
Valentina Cosentino ◽  
Dario Di Cara ◽  
...  

This paper proposes a virtual tool for load flow analysis in energy distribution systems of micro-grids. The solution is based on a low-cost measurement architecture, which entails low-voltage power measurements in each secondary substation and a voltage measurement at the beginning of the medium voltage (MV) feeder. The proposed virtual tool periodically queries these instruments to acquire the measurements. Then, it implements a backward–forward load flow algorithm, to evaluate the power flow in each branch and the voltage at each node. The virtual tool performances are validated using power measurements acquired at the beginning of each MV feeder. The uncertainties on each calculated quantity are also evaluated starting from the uncertainties due to the used measurement instruments. Moreover, the influence of the line parameter uncertainties on the evaluated quantities is also considered. The validated tool is useful for the online analysis of power flows and also for planning purposes, as it allows verifying the influence of future distributed generator power injection. In fact, the tool is able to off-line perform the load flow calculation in differently distributed generation scenarios. The micro-grid of Favignana Island was used as a case study to test the developed virtual tool.


2010 ◽  
Vol 13 (2) ◽  
pp. 36-45
Author(s):  
Anh Huy Quyen ◽  
Anh Viet Truong ◽  
Huong Thi Thanh Vi

The primary goal of a generic optimal power load flow problem Is minimizing total fuel costs of generating units in an electrical power system while maintaining the security of the system. This paper presents an algorithm for optimizing power load flow analysis through the application of Newton ’s method and attends to interchange power between the different power systems. Specifically, it will explore the implementation of data structure such as the binary tree in searching OPF variables (controls, states, constraints) in large power system. So the OPF solution is quickly converging. The primary goal of a generic OFF has been tested by simulation method for 6- bus system in Power World environment. The optimal power flow results is shown that total generation fuel cost in the interchange power case is less expensive than in no interchange power case as well as total transmission losses in the power system are smaller.


Author(s):  
Rudy Gianto ◽  
Ade Elbani

As they are more efficient in extracting wind energy, variable speed wind power plants (WPPs) are currently replacing the fixed speed WPPs. One possible way to achieve a variable speed WPP is by using a squirrel cage induction generator (SCIG) with full-scale power electronic converter (PEC). In fact, as its cost is relatively lower, the application of SCIG-based variable speed WPP is gaining popularity nowadays. To be able to perform proper analyses (including the load flow analysis) of an electric power system, valid and accurate modeling of the system components is very important. This paper discusses the steady state model of SCIG-based variable speed WPP in power factor control mode for a load flow analysis of an electric power distribution system. The model was developed based on formulas that calculate the turbine mechanical power input and WPP electrical power output. Integration of the proposed model in load flow analysis is also discussed and presented in this paper.


Author(s):  
Lea Tien Tay ◽  
William Ong Chew Fen ◽  
Lilik Jamilatul Awalin

<p>The determination of power and voltage in the power load flow for the purpose of design and operation of the power system is very crucial in the assessment of actual or predicted generation and load conditions. The load flow studies are of the utmost importance and the analysis has been carried out by computer programming to obtain accurate results within a very short period through a simple and convenient way. In this paper, Newton-Raphson method which is the most common, widely-used and reliable algorithm of load flow analysis is further revised and modified to improve the speed and the simplicity of the algorithm. There are 4 Newton-Raphson algorithms carried out, namely Newton-Raphson, Newton-Raphson constant Jacobian, Newton-Raphson Schur Complement and Newton-Raphson Schur Complement constant Jacobian. All the methods are implemented on IEEE 14-, 30-, 57- and 118-bus system for comparative analysis using MATLAB programming. The simulation results are then compared for assessment using measurement parameter of computation time and convergence rate. Newton-Raphson Schur Complement constant Jacobian requires the shortest computational time.</p>


Sign in / Sign up

Export Citation Format

Share Document