Life Cycle Assessment of the natural gas supply chain and power generation options with CO2 capture and storage: Assessment of Qatar natural gas production, LNG transport and power generation in the UK

Author(s):  
Anna Korre ◽  
Zhenggang Nie ◽  
Sevket Durucan
2018 ◽  
Vol 29 (5) ◽  
pp. 826-841 ◽  
Author(s):  
Binita Shah ◽  
Seema Unnikrishnan

Purpose India is a developing economy along with an increasing population estimated to be the largest populated country in about seven years. Simultaneously, its power consumption is projected to increase more than double by 2020. Currently, the dependence on coal is relatively high, making it the largest global greenhouse gas emitting sector which is a matter of great concern. The purpose of this paper is to evaluate the environmental impacts of the natural gas electricity generation in India and propose a model using a life cycle assessment (LCA) approach. Design/methodology/approach LCA is used as a tool to evaluate the environmental impact of the natural gas combined cycle (NGCC) power plant, as it adopts a holistic approach towards the whole process. The LCA methodology used in this study follows the ISO 14040 and 14044 standards (ISO 14040: 2009; ISO 14044: 2009). A questionnaire was designed for data collection and validated by expert review primary data for the annual environmental emission was collected by personally visiting the power plant. The study follows a cradle to gate assessment using the CML (2001) methodology. Findings The analysis reveals that the main impacts were during the process of combustion. The Global warming potential is approximately 0.50 kg CO2 equivalents per kWh of electricity generation from this gas-based power plant. These results can be used by stakeholders, experts and members who are authorised to probe positive initiative for the reduction of environmental impacts from the power generation sector. Practical implications Considering the pace of growth of economic development of India, it is the need of the hour to emphasise on the patterns of sustainable energy generation which is an important subject to be addressed considering India’s ratification to the Paris Climate Change Agreement. This paper analyzes the environmental impacts of gas-based electricity generation. Originality/value Presenting this case study is an opportunity to get a glimpse of the challenges associated with gas-based electricity generation in India. It gives a direction and helps us to better understand the right spot which require efforts for the improvement of sustainable energy generation processes, by taking appropriate measures for emission reduction. This paper also proposes a model for gas-based electricity generation in India. It has been developed following an LCA approach. As far as we aware, this is the first study which proposes an LCA model for gas-based electricity generation in India. The model is developed in line with the LCA methodology and focusses on the impact categories specific for gas-based electricity generation.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 429 ◽  
Author(s):  
Yang Yang ◽  
Ji-Qin Ni ◽  
Wanbin Zhu ◽  
Guanghui Xie

Compressed bio-natural gas (CBG) production from large-scale systems has been recognized as promising because of the abundance of manure and crop residue feedstocks and its environmental friendliness. This study is a life cycle assessment using the local database of an operating large-scale CBG system of manure co-digestion with corn stover in China and eBalance software. The results showed that the system’s Primary Energy Input to Output (PEIO) ratio was 20%. Its anaerobic digestion process was the main contributor to energy consumption, accounting for 76%. Among the six environmental impacts investigated in this study, the global warming potential (GWP) was the major environmental impact, and the digestate effluent management process was the main contributor to the GWP, accounting for 60%. The mitigation potential of the system, compared with reference case for GWP, was 3.19 kg CO2-eq for 1 m3 CBG production. In the future, the GWP mitigation could be 479 × 106 metric tons CO2-eq with 150 × 109 m3 yr−1 CBG production from the entire China. This study provides a reference on large-scale CBG production system for establishing a localized life cycle assessment inventory database in China.


2017 ◽  
Vol 22 (12) ◽  
pp. 1944-1956 ◽  
Author(s):  
Carla Tagliaferri ◽  
Roland Clift ◽  
Paola Lettieri ◽  
Chris Chapman

Sign in / Sign up

Export Citation Format

Share Document