Building energy conservation : an overview of building energy performance in Hong Kong

1995 ◽  
Author(s):  
Kwok-hip Ngan
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Bo-Eun Choi ◽  
Ji-Hyun Shin ◽  
Jin-Hyun Lee ◽  
Hyo-Jun Kim ◽  
Sun-Sook Kim ◽  
...  

Building energy conservation measure (ECM) of insulation materials suitable for the domestic situation in the construction sector (passive) is established. The ECMs of insulation materials were classified into walls, roofs, and floors. Also, economic evaluation databases, which are composed of material costs, labor costs, and expenses for constructed alternatives, were built. After setting the target building and deriving the ECM list of insulation materials for the target building, the energy use evaluation and economic evaluation were performed for each constructed alternative. Based on this, the optimal building energy conservation measure of the target building was derived by applying the decision-support process.


2020 ◽  
Vol 10 (12) ◽  
pp. 4188 ◽  
Author(s):  
Chuan-Rui Yu ◽  
Han-Sen Guo ◽  
Qian-Cheng Wang ◽  
Rui-Dong Chang

Environmental concerns and growing energy costs raise the importance of sustainable development and energy conservation. The building sector accounts for a significant portion of total energy consumption. Passive cooling techniques provide a promising and cost-efficient solution to reducing the energy demand of buildings. Based on a typical residential case in Hong Kong, this study aims to analyze the integration of various passive cooling techniques on annual and hourly building energy demand with whole building simulation. The results indicate that infiltration and insulation improvement are effective in regard to energy conservation in buildings, while the effectiveness of variations in building orientation, increasing natural ventilation rate, and phase change materials (PCM) are less significant. The findings will be helpful in the passive house standard development in Hong Kong and contribute to the further optimization work to realize both energy efficiency and favorably built environments in residential buildings.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Mohammad Nyme Uddin ◽  
Hsi-Hsien Wei ◽  
Hung Lin Chi ◽  
Meng Ni

Energy consumption in buildings depends on several physical factors, including its physical characteristics, various building services systems/appliances used, and the outdoor environment. However, the occupants’ behavior that determines and regulates the building energy conservation also plays a critical role in the buildings’ energy performance. Compared to physical factors, there are relatively fewer studies on occupants’ behavior. This paper reports a systematic review analysis on occupant behavior and different modeling approaches using the Scopus and Science Direct databases. The comprehensive review study focuses on the current understanding of occupant behavior, existing behavior modeling approaches and their limitations, and key influential parameters on building energy conservation. Finally, the study identifies six significant research gaps for future development: occupant-centered space layout deployment; occupant behavior must be understood in the context of developing or low-income economies; there are higher numbers of quantitative occupant behavior studies than qualitative; the extensive use of survey or secondary data and the lack of real data used in model validation; behavior studies are required for diverse categories building; building information modeling (BIM) integration with existing occupant behavior modeling/simulation. These checklists of the gaps are beneficial for researchers to accomplish the future research in the built environment.


Sign in / Sign up

Export Citation Format

Share Document