scholarly journals Energy Performance Evaluation and Economic Analysis of Insulation Materials of Office Building in Korea

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Bo-Eun Choi ◽  
Ji-Hyun Shin ◽  
Jin-Hyun Lee ◽  
Hyo-Jun Kim ◽  
Sun-Sook Kim ◽  
...  

Building energy conservation measure (ECM) of insulation materials suitable for the domestic situation in the construction sector (passive) is established. The ECMs of insulation materials were classified into walls, roofs, and floors. Also, economic evaluation databases, which are composed of material costs, labor costs, and expenses for constructed alternatives, were built. After setting the target building and deriving the ECM list of insulation materials for the target building, the energy use evaluation and economic evaluation were performed for each constructed alternative. Based on this, the optimal building energy conservation measure of the target building was derived by applying the decision-support process.

2015 ◽  
Vol 814 ◽  
pp. 524-532 ◽  
Author(s):  
Li Ping Ma ◽  
Ying Wang ◽  
Quan Jiang ◽  
Chun Zhi Zhao ◽  
Ping Zhao

Mateial selection technology for green building is an important support of green building development. Aiming at the realization of green building energy conservation, the green building material selection evaluation model was proposed integrating double elements - energy contained in a unit product of building material and energy saveing brought to the building operation in the service process of building material. Taking three categories of thermal insulation materials - polyphenyl board, rock wool board and polyurethane rigid foam board as examples, the relative relationship was calculated and analyzed between energy contained in a unit product of three categories of thermal insulation materials and energy saving in building operation brought by them respectively, and finally a conclusion draws from that: based on building energy conservation, polyphenyl board is a suitable product to realize green building material selection.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 749
Author(s):  
John H. Scofield ◽  
Susannah Brodnitz ◽  
Jakob Cornell ◽  
Tian Liang ◽  
Thomas Scofield

In this work, we present results from the largest study of measured, whole-building energy performance for commercial LEED-certified buildings, using 2016 energy use data that were obtained for 4417 commercial office buildings (114 million m2) from municipal energy benchmarking disclosures for 10 major U.S. cities. The properties included 551 buildings (31 million m2) that we identified as LEED-certified. Annual energy use and greenhouse gas (GHG) emission were compared between LEED and non-LEED offices on a city-by-city basis and in aggregate. In aggregate, LEED offices demonstrated 11% site energy savings but only 7% savings in source energy and GHG emission. LEED offices saved 26% in non-electric energy but demonstrated no significant savings in electric energy. LEED savings in GHG and source energy increased to 10% when compared with newer, non-LEED offices. We also compared the measured energy savings for individual buildings with their projected savings, as determined by LEED points awarded for energy optimization. This analysis uncovered minimal correlation, i.e., an R2 < 1% for New Construction (NC) and Core and Shell (CS), and 8% for Existing Euildings (EB). The total measured site energy savings for LEED-NC and LEED-CS was 11% lower than projected while the total measured source energy savings for LEED-EB was 81% lower than projected. Only LEED offices certified at the gold level demonstrated statistically significant savings in source energy and greenhouse gas emissions as compared with non-LEED offices.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Mohammad Nyme Uddin ◽  
Hsi-Hsien Wei ◽  
Hung Lin Chi ◽  
Meng Ni

Energy consumption in buildings depends on several physical factors, including its physical characteristics, various building services systems/appliances used, and the outdoor environment. However, the occupants’ behavior that determines and regulates the building energy conservation also plays a critical role in the buildings’ energy performance. Compared to physical factors, there are relatively fewer studies on occupants’ behavior. This paper reports a systematic review analysis on occupant behavior and different modeling approaches using the Scopus and Science Direct databases. The comprehensive review study focuses on the current understanding of occupant behavior, existing behavior modeling approaches and their limitations, and key influential parameters on building energy conservation. Finally, the study identifies six significant research gaps for future development: occupant-centered space layout deployment; occupant behavior must be understood in the context of developing or low-income economies; there are higher numbers of quantitative occupant behavior studies than qualitative; the extensive use of survey or secondary data and the lack of real data used in model validation; behavior studies are required for diverse categories building; building information modeling (BIM) integration with existing occupant behavior modeling/simulation. These checklists of the gaps are beneficial for researchers to accomplish the future research in the built environment.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


2013 ◽  
Vol 415 ◽  
pp. 734-740
Author(s):  
Yun Long Ma ◽  
Xiao Hua Chen ◽  
Bo Liu ◽  
Guo Feng Zhang

This paper analyzes the characteristics and composition of the energy consumption system of the building from the perspective of systematic energy conservation and presents the systematic framework of the consumption model. Based on the framework, the paper focuses on how to establish a building energy consumption assessment system, find the energy efficiency index system and assessment approaches, and apply the results directly into building energy conservation and emission reduction. It not only facilitates greatly the overall and efficient management of the energy consumption system of the building, but also serves as another new approach to achieve energy conservation and emission reduction.


2011 ◽  
Vol 71-78 ◽  
pp. 451-455
Author(s):  
Yi Fang Zhao

Based on the build-and-run cycle of the energy-conservation building, this paper studied from the perspective of building energy-saving. It analyzed the amount of increased investment through the analysis of build-and-run cycle cost and economic benefits of the energy-conservation building throughout the life cycle.Finally it establishes an economic evaluation model for the energy-saving building.


Sign in / Sign up

Export Citation Format

Share Document