scholarly journals Analysis of Rectangular Reinforced Concrete Liquied Tanks by Using Yield Line Theory

2021 ◽  
Vol 1 (1) ◽  
pp. 50-59
Author(s):  
Yousef Zandi ◽  
Afram Keivani

In the analysis of rectangular reinforced liquid storage tanks, a method assuming linear-elastic behavior for material can be used, i.e., the strip method, the moment coefficient method, the finite element method, etc. In the analysis of these types of tanks, tank walls can be considered as slabs. In this study, tank walls were analyzed as slabs subjected to hydrostatic loading; in the analysis, the yield line theory is used because it is more suitable for the linear inelastic behavior of reinforced concrete slabs than the ones based on the linear elastic theory. An iterative algorithm based on yield line theory is presented for the design of isotropically reinforced recrangular concrete slabs supported along all four edges. A computer program is coded which predicts the location of yield lines for the slabs depending upon certain parameters. As a result of this prediction, the manual design of such slabs can be significantly simplified by the use of the coefficient obtained by using the program. It was shown that the analytical computation of the ultimate moment per unit length requires the solution of a highly nonlinear system of equations. This difficulty was overcome by utilizing an iterative technique within the computer program. It also gives the value of the ultimate moment per unit length of the yield line.

2011 ◽  
Vol 105-107 ◽  
pp. 1035-1039
Author(s):  
Da Shan Zhang ◽  
Yu Li Dong

This paper presents the tensile membrane action on one-way reinforced concrete slabs, and two full-scale specimens with one edge clamped and one edge simply supported were tested at large displacements. The details of the two tests including support conditions, arrangement of reinforcements and layout of displacement transducers are described. The test results show that the load-carrying capacity of the two slabs is significantly improved due to the tensile membrane action, about 26.6% more than the predicted value using the well-established yield-line theory. Until maximum vertical displacement reached 1/15 of the span-length, the slab did not fail and carried the load steadily.


2020 ◽  
Vol 6 (10) ◽  
pp. 1992-2001
Author(s):  
Sushant Gupta ◽  
Sanjeev Naval

The design of reinforced concrete slabs supported on two adjacent edges involves complex formulations. In this paper, a simplistic approach is presented for designing orthotropic slabs supported on two adjacent edges. Slab supported on two adjacent edges (existing slab) is transformed into a slab supported on three edges (equivalent slab) by taking a mirror image of the yield line pattern of two adjacent edges supported RC slabs about its unsupported edges to get the exact collapse mechanism for the slabs supported on three edges. The equivalent aspect ratio can be used in the equations already developed for the slabs supported on three sides. Ultimate moment carrying capacity of the slab carrying uniform load can be evaluated by using the available analytical formulations of the slab supported on three edges. So, the present approach gives a simplified method to analyse and design the orthotropic RC rectangular slab supported on two adjacent edges using the equations available for slab supported on three adjacent edges. Hence, the simplistic approach will be very helpful for structural designers dealing with analysis and design of slabs supported on two adjacent edges. Doi: 10.28991/cej-2020-03091598 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document