scholarly journals Calculation Results for Enhancing Ability of I-131 Radioisotope Production Using Tellurium Dioxide Target on the Dalat Nuclear Research Reactor

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Cuong Nguyen Kien ◽  
Nghiem Huynh Ton ◽  
Vinh Le Vinh ◽  
Vien Luong Ba ◽  
Huy Pham Quang ◽  
...  

The paper presents the calculation results in re-design of neutron trap of the Dalat Nuclear Research Reactor (DNRR) for I-131 radioisotope production using TeO2 target. The new design permits for loading more TeO2 capsules from 9 to 12, 15 and 18 in the neutron trap. The enhancement of radioisotope production was implemented by re-arrangement of the neutron trap without changing the dimension or geometry of irradiation capsules. By using neutronics computer code as MCNP6, the obtained calculation results of I-131 activity in 6 investigated cases showed that the new design by the re-arrangement of the neutron trap can be used effectively for radioisotope production with thermal neutron flux in average range from 5.3×1012 to 1×1013 n/cm2.s and the total activity of I-131 isotope was increased from about 19.2% to 38.8% comparing with the original design using 9 capsules. The negative reactivity insertion was from 0.60 βeff to 0.96 βeff when loading capsules that also met the safety requirements of operational conditions of the DNRR.

2014 ◽  
Vol 4 (1) ◽  
pp. 46-56
Author(s):  
Van Dong Duong ◽  
Ngoc Dien Pham ◽  
Van Cuong Bui ◽  
Phuoc Tho Mai ◽  
Thi Thu Nguyen ◽  
...  

After reconstruction, the Dalat Nuclear Research Reactor (DNRR) was inaugurated on March 20th, 1984 with the nominal power of 500 kW. Since then the production of radioisotopes and labelled compounds for medical use was started. Up to now, DNRR is still the unique one in Vietnam. The reactor has been operated safely and effectively with the total of about 37,800 hrs (approximately 1,300 hours per year). More than 90% of its operation time and over 80% of its irradiation capacity have been exploited for research and production of radioisotopes. This paper gives an outline of the radioisotope production programme using the DNRR. The production laboratory and facilities including the nuclear reactor with its irradiation positions and characteristics, hot cells, production lines and equipment for the production of Kits for labelling with 99mTc and for quality control, as well as the production rate are mentioned. The methods used for production of 131I, 99mTc, 51Cr, 32P, etc. and the procedures for preparation of radiopharmaceuticals are described briefly. Status of utilization of domestic radioisotopes and radiopharmaceuticals in Vietnam is also reported.


2021 ◽  
Vol 8 (4) ◽  
pp. 1-9
Author(s):  
Duc Tu Dau ◽  
Minh Tuan Nguyen ◽  
Vinh Vinh Le ◽  
Ton Nghiem Huynh ◽  
Cuong Nguyen Kien ◽  
...  

The leakage from the reactor pool back into the dry irradiation channels due to corrosion or mechanics based reason is a postulated event that could occur under operating conditions of the Dalat nuclear research reactor (DNRR), especially the channel 7-1 which has been installed more than 30 years. When it occurs, the air space in these channels will be occupied by the water, subsequently a water column will appear in fuel region. The appearance of water column considerably enhances medium of neutron moderation for its surrounding fuel assemblies. As a result, a positive reactivity is inserted in the core and this event is classified as an insertion of excess reactivity. This event needs to be addressed by analysis and assessment from safety point of view and the results of analysis are also important for updating the reactor operating procedures. This paper presents assumptions, computer models and the results of analysis for such event in the DNRR by using MCNP5 code (code for neutronics analysis) and EUREKA-2/RR code (code for transient analysis). The calculation results include value of reactivity insertion, change in power of reactor, as well as surface temperature of the hottest fuel assembly. This research contributes to updating the reactor operating procedure.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kien-Cuong Nguyen ◽  
Vinh-Vinh Le ◽  
Ton-Nghiem Huynh ◽  
Ba-Vien Luong ◽  
Nhi-Dien Nguyen

This paper presents results of steady-state thermal-hydraulic analysis for the designed working core of the Dalat Nuclear Research Reactor (DNRR) using the PLTEMP/ANL code. The core was designed to be loaded with 92 low-enriched uranium (LEU) VVR-M2 fuel bundles (FBs) and 12 beryllium rods surrounding a neutron trap at the core center, for replacement of the previous core with 104 high-enriched uranium (HEU) VVR-M2 FBs. Before using this code for thermohydraulic analysis of the designed LEU working core, it was validated by comparing calculation results with experimental data collected from the HEU working core of the DNRR. The discrepancy between calculated results and measured data was at the maximum about 0.8°C and 1.5°C of fuel cladding and outlet coolant temperatures, respectively. In the design calculation, thermohydraulic safety was confirmed through evaluation of the fuel cladding and coolant temperatures, as well as of other safety parameters such as Departure from Nucleate Boiling Ratio (DNBR) and Onset of Nucleate Boiling Ratio (ONBR). The calculation results showed that, in normal operation conditions at full nominal thermal power of 500 kW without uncertainty parameters, the maximum fuel cladding temperature of the hottest FB was about 90.4°C, which is lower than its limit value of 103°C, the minimum DNBR was 32.0, which is much higher than the recommended value of 1.5, and the minimum ONBR was 1.43, which is higher than the recommended value of 1.4 for VVR-M2 LEU fuel type. When the global and local hot channel factors were taken into account, the maximum temperature of fuel cladding at the hottest FB was about 98.4 °C, for global only, and 114.3°C, for global together with local hot channel factors. The calculation results confirm the safety operation of the designed LEU core loaded with 92 fresh VVR-M2 FBs.


2019 ◽  
Vol 322 (3) ◽  
pp. 1341-1350
Author(s):  
Eros Mossini ◽  
Luca Codispoti ◽  
Giorgio Parma ◽  
Filippo Maria Rossi ◽  
Elena Macerata ◽  
...  

1974 ◽  
Vol 96 (4) ◽  
pp. 394-398
Author(s):  
M. Taeschner ◽  
R. Gariod

Due to its complexity, nuclear reactor instrument automation is a challenge to engineers. High investment and running costs of a nuclear research reactor imply the use of advanced equipment and concepts for instrument automation when striving for high performance, reliability, and operational convenience under budgetary pressure. The article describes a successfully operating instrument automation system stressing the important underlying concepts trying to avoid too much details on specific hardware which is dependent on the time when one must order things.


Sign in / Sign up

Export Citation Format

Share Document