scholarly journals Calculation of active earth pressure on retaining walls with line surcharge effect and presentation of design diagrams in cohesive – frictional soils

2021 ◽  
Vol 34 (01) ◽  
pp. 242-257
Author(s):  
Mojtaba Ahmadabadi ◽  
Mohammad Karim Faghirizadeh

In this study, a formulation and models have been proposed to calculate the active earth pressure on the wall and to determine the angle of failure wedge with line surcharge effect and taking into account the soil cohesion. The proposed method has the advantage of taking into account soil parameters such as cohesion, the angle of friction between the soil and the wall, the surcharge effect in the elasto-plastic environment, and the range that determines the critical surcharge. This paper presents dimensionless diagrams for different soil specifications and surcharges. According to these diagrams, it is easy to determine the distribution of excess pressure caused by surcharge, the distribution of the total active earth pressure on the wall, the angle of the failure wedge as well as the minimum and maximum active coefficient of the pressure with respect to surcharge distance. Furthermore, all soil parameters, surcharge and the results have been addressed. In general, the results indicated that increasing the angle of internal friction of the soil and cohesion would result to a nonlinear reduction in the active earth pressure coefficient, contrary to the line surcharge, which increases the active earth pressure of the soil and ultimately increases the active earth pressure coefficient. In this research, a diagram has been presented that expresses the surface that the active earth pressure coefficient changes with respect to the surcharge distance. The lower limit of each graph expresses the minimum active earth pressure coefficient (kas (min)) at the minimum surcharge distance, whereas the upper limit indicates the maximum active earth pressure coefficient (kas (max)) at the maximum surcharge distance from the wall. Comparison of the results of the proposed method with previous methods, codes and numerical software shows that in general, the proposed method is able to simplify the analysis of walls with surcharge effect in cohesive-frictional soils. In addition to the formulation and diagrams, a computer program in MATLAB software has been written. Using the results of these codes, the pressure on the wall with the linear surcharge effect, angle of failure wedge and pressure distribution on the wall in the cohesive-frictional soils can be calculated for all scenarios.

2017 ◽  
Vol 54 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Mohamed Amine Sobhi ◽  
Li Li ◽  
Michel Aubertin

The earth pressure coefficient K, defined as the horizontal to vertical normal (effective) stresses ratio (σh/σv), is a key parameter in analytical solutions for estimating the stresses in backfilled stopes. In the case of vertical stopes, the value of K has sometimes been defined using the at-rest earth pressure coefficient K0, while others have applied Rankine’s active earth pressure coefficient Ka. To help clarify this confusing situation, which can lead to significantly different results, the origin and nature of the at-rest and Rankine’s active coefficients are first briefly recalled. The stress state in backfilled stopes is then investigated using numerical simulations. The results indicate that the value of K can be close to Ka for cohesionless backfills along the vertical central line (CL) of vertical stopes, due to sequential placement and partial yielding of the backfill. For inclined stopes, simulations show that the ratio between the minor and major principal stresses (σ3/σ1) along the CL in the backfill, which differs from σh/σv, can also be close to Ka. A simple expression is shown to represent the horizontal to vertical stresses ratio σh/σv (= K) along the CL of such inclined stopes well. A discussion follows on the effects of backfill properties and simulation approach.


1987 ◽  
Vol 24 (2) ◽  
pp. 267-278
Author(s):  
W. A. Trow

This paper considers shoring of excavations associated with construction of buildings with particular reference to the selection of the earth pressure coefficient. The empirical criteria, given by R. B. Peck and other participants at the International Conference on Soil Mechanics and Foundation Engineering in Mexico City in 1969, are examined. Several case histories of deep excavations are given where acceptable deformations were experienced using active earth pressure coefficients in shoring design. Where failure occurred, it was attributed to causes unrelated to the selection of earth pressure coefficient. Key words: shoring, earth pressure coefficient, deformations.


Author(s):  
Xiaodong Zhao ◽  
Guoqing Zhou ◽  
Bo Wang ◽  
Wei Jiao ◽  
Jing Yu

Artificial frozen soils (AFS) have been used widely as temporary retaining walls in strata with soft and water-saturated soil deposits. After excavations, frozen soils thaw, and the lateral earth pressure penetrates through the soils subjected to freeze–thaw, and acts on man-made facilities. Therefore, it is important to investigate the lateral pressure (coefficient) responses of soils subjected to freeze–thaw to perform structure calculations and stability assessments of man-made facilities. A cubical testing apparatus was developed, and tests were performed on susceptible soils under conditions of freezing to a stable thermal gradient and then thawing with a uniform temperature (Fnonuni–Tuni). The experimental results indicated a lack of notable anisotropy for the maximum lateral preconsolidated pressures induced by the specimen’s compaction and freeze–thaw. However, the freeze–thaw led to a decrement of lateral earth pressure coefficient  K0, and  K0 decrement under the horizontal Fnonuni–Tuni was greater than that under the vertical Fnonuni–Tuni. The measured  K0 for normally consolidated and over-consolidated soil specimens exhibited anisotropic characteristics under the vertical Fnonuni–Tuni and horizontal Fnonuni–Tuni treatments. The anisotropies of  K0 under the horizontal Fnonuni–Tuni were greater than that under the vertical Fnonuni–Tuni, and the anisotropies were more noticeable in the unloading path than that in the loading path. These observations have potential significances to the economical and practical design of permanent retaining walls in soft and water-saturated soil deposits.


2014 ◽  
Vol 5 (1) ◽  
pp. 39-57
Author(s):  
Sima Ghosh ◽  
Arijit Saha

In the present analysis, using the horizontal slice method and D'Alembert's principle, a methodology is suggested to calculate the pseudo-dynamic active earth pressure on battered face retaining wall supporting cohesive-frictional backfill. Results are presented in tabular form. The analysis provides a curvilinear rupture surface depending on the wall-backfill parameters. Effects of a wide range of variation of parameters like wall inclination angle (a), wall friction angle (d), soil friction angle (F), shear wave velocity (Vs), primary wave velocity (Vp), horizontal and vertical seismic accelerations (kh, kv) along with horizontal shear and vertical loads and non-linear wedge angle on the seismic active earth pressure coefficient have been studied.


Author(s):  
Zhiqiang Wu ◽  
Zhengyin Cai ◽  
Kai Xu ◽  
Yunfei Guan ◽  
Yinghao Huang ◽  
...  

2012 ◽  
Vol 3 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Sima Ghosh

Knowledge of passive resistance is extremely important and it is the basic data required for the design of geotechnical structures like the retaining wall moving towards the backfill, the foundations, the anchors etc. An attempt is made to develop a formulation for the evolution of seismic passive resistance of a retaining wall supporting c-F backfill using pseudo-static method. Considering a planar rupture surface, the formulation is developed in such a way so that a single critical wedge surface is generated. The variation of seismic passive earth pressure coefficient are studied for wide range of variation of parameters like angle of internal friction, angle of wall friction, cohesion, adhesion, surcharge, unit weight of the backfill material, height and seismic coefficients.


2009 ◽  
Vol 19 (1) ◽  
pp. 129-132 ◽  
Author(s):  
Zhi-wei XU ◽  
Kai-hua ZENG ◽  
Zhou WEI ◽  
Zhi-qiang LIU ◽  
Xiao-dong ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document