scholarly journals Energy Harvesting Technology by Converting Waste Heat Energy from Automobiles

2021 ◽  
Vol 20 (4) ◽  
pp. 127-132
Author(s):  
Md Abdullah Al Rakib Rakib ◽  
Md. Saniat Rahman Zishan ◽  
Md. Abid Hasan Abid

In this project, heat energy is used for generatingelectrical energy by a conversion process. The energy harvestingfrom the heat of motorbike has become a new source of portableenergy for rechargeable gadgets. In contrary, the conventionalnonrenewable energy sources have likewise added to anexpansion in contamination on the planet and a disintegration ofhuman wellbeing. From the electrical energy, the mobile phonewill be charged. A thermoelectric generator has been connectedto the hot portion of the motorbike and while riding the bike, anykind of chargeable device will get charged. The prototype of thisresearch work has effectively harvested electrical energy fromheat using thermoelectric generator and has managed to provideenough power at different speeds of the motorbike.

The growing concern on energy conservation and reduction of carbon footprint has led to a lot of inventions and innovations in terms of energy-efficient technologies in all the energy consuming applications. The automobile sector is a crucial zone where these technologies have a major role to play due to the sheer abundance of the number of automobiles.Many small refinements, alterations and innovations are happening in this field which has led to furthermore energy economic automobiles than before.But even in an advanced internal combustion engine, about two-thirds of fuel consumed by an automobile is discharged into the surroundings as waste heat. The effect of this is the increase in the surrounding air temperature which in turn contributes significantly to global warming. This paper proposes amethod to reduce the emission of heat from automobiles by designing and implementinga waste heat recovery system for internal combustion (IC) engines. The key aim is to reduce the amount of heat released into the environment and to convert it into useful energy. A thermoelectric generator (TEG) assembly is used to directly convert the wasted heat energy from the automobile into electrical energy. This electrical energy is conditioned using a Cukconverter and maximum power point tracking (MPPT) algorithm is embedded in the converter for impedance matching and maximum power transfer from TEG to the converter. The conditioned output is used to charge the battery of the vehicle. This methodologyalso increases the energy efficiency of the vehicle as a higher capacity battery can be employed.The proposed system can work well under varying temperature conditions to give a constant output. It can be implemented in any mechanical/ electrical systems were there is wastage of heat energy like gas pipelines, wearable electronics, space probes, cookstoves, boilers, thermal vision, etc. One of the thrust areas where this technology can be effectively utilized in today’s world is in electric vehicles where the energy efficiency is the most important factor.


2019 ◽  
Vol 2 (3) ◽  
pp. 525-531
Author(s):  
Mahmut Hekim ◽  
Engin Cetin

Geothermal power plants are the plants that provide the conversion of thermal energy in geothermal fluid to electrical energy as a result of the extraction of underground hot water resources to the earth by drilling. The total installed power of geothermal power plants in the field of geothermal resources in Turkey has reached 1,336 MW. The geothermal fluid, which is used for electric power generation in geothermal power plants, is re-injected into the underground wells after electrical energy production. For efficient generation of electrical energy in geothermal power plants, it is aimed to reuse the waste heat energy within the geothermal fluid before it is sent to the re-injection well. To achieve this aim, thermoelectric generator modules which convert waste heat energy to electrical energy can be used. In this study, a thermoelectric generator-based geothermal power plant simulator that converts geothermal fluid waste heat into electrical energy is installed and commissioned in the laboratory conditions.


2020 ◽  
Vol 5 (3) ◽  
pp. 58-61

Energy crisis is major problem in this era. Thermoelectric generator is a promising solution for this problem. This research aims to recover waste heat energy from automobile by converting it into electrical energy using thermoelectric generator. Thermoelectric generator is applied at automobile exhaust system to produce electrical energy from heat energy directly with a phenomenon called see-beck effect. This work develops a heat exchanger model with thermoelectric generator for automobile waste heat recovery in which heat source and cold sink are actually modeled. Main emphasis is put on effective temperature difference across the TEGs to get better performance of the exhaust waste heat recovery system. This research shows that the model is able to produce up to 2.67 W energy using 3 Numbers of TEGs in this design.


2012 ◽  
Vol 476-478 ◽  
pp. 1336-1340
Author(s):  
Kai Feng Li ◽  
Rong Liu ◽  
Lin Xiang Wang

The concept of energy harvesting works towards developing self-powered devices that do not require replaceable power supplies. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with ferroelectric materials. Ferroelectric materials have a crystalline structure that provide a unique ability to convert an applied electrical potential into a mechanical strain or vice versa. Based on the properties of the material, this paper investigates the technique of power harvesting and storage.


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


Author(s):  
Mihail O. Cernaianu ◽  
Aurel Gontean

The authors propose in this chapter an original, self-sustainable, power supply system for wireless monitoring applications that is powered from an energy harvesting device based on thermoelectric generators (TEGs). The energy harvesting system's purpose is to gather the waste heat from low temperature sources (<90°C), convert it to electrical energy and store it into rechargeable batteries. The energy harvesting system must be able to power a so-called condition monitoring system (CMS) that is used for the monitoring of heat dissipation equipment. The setup used for measurements (including mechanical details) and the experiments are described along with all the essential results of the research. The electronic system design is emphasized and various options are discussed.


Sign in / Sign up

Export Citation Format

Share Document