Mesozoic Hydrothermal Overprint on Carboniferous Bauxite in China

2020 ◽  
Author(s):  
Ruixue Wang ◽  
Qingfei Wang ◽  
I. Tonguç Uysal ◽  
Erick Ramanaidou ◽  
Jun Deng ◽  
...  

Abstract Bauxite is the world’s main source of aluminum and typically consists of gibbsite, boehmite, and minor amounts of diaspore. However, bauxite deposits from the North and South China blocks consist mostly of diaspore and associated minerals, including anatase and illite. Much of this illite is authigenic and occurs as three polytypes (1M, 1Md, and 2M1), with Kübler indices ranging from 0.23 to 0.47 indicating precipitation temperatures of 175° to 300°C. The Raman spectra of anatase show an intensity ratio of <1.5 for G (~1,600 cm–1) and D bands (~1,350 cm–1) diagnostic of organic matter, suggesting its presence during bauxite sedimentation followed by heating (165° to 270°C). The K-Ar ages of authigenic illite from the South China block (178–137 Ma) and the North China block (214–203 Ma) are synchronous with known regional Mesozoic tectono-thermal events generating hydrothermal overprints resulting in (1) the formation of illite, (2) the conversion of some diaspores from thermal of gibbsite and boehmite, and (3) the heating of anatase postsedimentation of the Carboniferous bauxites.

2021 ◽  
Vol 91 (9) ◽  
pp. 1010-1023
Author(s):  
Cheng Cheng ◽  
Shuangying Li ◽  
Xiangyang Xie ◽  
Yanlin Lu ◽  
Arthur B. Busbey ◽  
...  

ABSTRACT The newly defined Carboniferous Meishan Group, along the northern margin of the Dabie orogenic belt, provides unique opportunities to document the poorly understood Paleozoic tectonic evolution of the Dabie orogenic belt and the Paleozoic convergence between the North and South China blocks. We apply sandstone petrology, geochemistry, and U-Pb detrital-zircon geochronology to constrain the provenance of the Carboniferous Meishan Group and to document its potential tectonic significance. We conclude that the Meishan Group received most sediment directly from early Paleozoic continental island arc rocks that are currently missing in the Dabie orogenic belt, with minor contributions from middle Neoproterozoic magmatic rocks of the South China Block and recycling of Archean to Proterozoic basement rocks of both the North and South China blocks. Compilation and comparison of detrital zircons and geochemistry data of the Silurian–Devonian and Carboniferous units suggests that all of them share similar source areas, but that individual contributions from each source were different. These results support the hypothesis that the Dabie orogenic belt developed a similar Paleozoic accretionary system, and shares a similar tectonic history, with the Qinling orogenic belt. These provenance patterns can be explained by a model of oblique convergence between the North and South China blocks during the Paleozoic. The South China Block was obliquely subducted beneath the North China Block with its opening to the east, forming an eastward-widening sedimentary basin. As a result, the eastern part of the basin received more sediment from the northern passive margin of the South China Block, while the western part of the basin received more material from the southern active margin of the North China Block.


Author(s):  
Chen Wu ◽  
Jie Li ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Xuanhua Chen ◽  
...  

The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.


2020 ◽  
pp. 753-774
Author(s):  
Kun-Feng Qiu ◽  
Richard J. Goldfarb ◽  
Jun Deng ◽  
Hao-Cheng Yu ◽  
Zong-Yang Gou ◽  
...  

Abstract The Jiaodong gold province, within the eastern margin of the North China block and the translated northeastern edge of the South China block, has a stated premining gold resource exceeding 4,500 metric tons (t). It is thus one of the world’s largest gold provinces, with a present cumulative annual production estimated at 60 t Au. More than 90% of the Jiaodong gold resource is hosted by batholiths and related bodies of the Linglong (ca. 160–145 Ma) and, to a lesser degree, Guojialing (ca. 130–122 Ma) suites. The intrusions were emplaced into high-grade metamorphic basement rocks of the Precambrian Jiaobei (North China block) and Sulu (South China block) terranes during a 70-m.y.-period of lithospheric delamination, extensional core complex formation, and exhumation. The deposits are located about 20 to 200 km to the east of the continental-scale NNE-striking Tancheng-Lujiang (Tan-Lu) strike-slip fault system. They occur along a series of more regional NNE- to NE-striking brittle and ductile-brittle faults, which appear to intersect the Tan-Lu main structure to the southwest. This system of early to middle Mesozoic regional thrust faults, reactivated during Cretaceous normal motion and ore formation, tends to occur along the margins of the main Linglong batholiths or between intrusions of the two suites of granitoids. Orebodies are mainly present as quartz-pyrite veins (Linglong-type) and as stockwork veinlets and disseminated mineralization (Jiaojia-type). The two mineralization styles are transitional and may be present within the same gold deposit. The ca. 120 Ma timing of gold mineralization correlates with major changes in plate kinematics in the Pacific Basin and the onset of seismicity along the Tan-Lu fault system, with the enormous fluid volumes and associated metal being derived from sediment devolatilization above the westerly subducting Izanagi slab.


2014 ◽  
Vol 151 (6) ◽  
pp. 975-995 ◽  
Author(s):  
JINBAO SU ◽  
SHUWEN DONG ◽  
YUEQIAO ZHANG ◽  
YONG LI ◽  
XUANHUA CHEN ◽  
...  

AbstractFifteen sandstone samples taken from pre-Cretaceous strata of the Yangtze Block are analysed to constrain the evolution of the South China Block, especially the assembly between the Yangtze and Cathaysia blocks. The results show that the maximum depositional age of the Neoproterozoic Lengjiaxi Group adjacent to the Cathaysia Block isc. 830 Ma, differing from that of the Kunyang and Dahongshan groups (> 960 Ma) on the southwestern margin of the Yangtze Block. The detrital zircons from Palaeozoic samples from the Yangtze Block have similar age populations to those in the Cathaysia Block, and they may originate from the Cathaysia Block according to palaeogeographic, palaeocurrent and former research data. The detrital zircons of Middle–Upper Jurassic sandstones in the southwestern and central Yangtze Block yield dominant age populations at 2.0–1.7 Ga and subordinate groups of 2.6–2.4 Ga, 0.8–0.7 Ga and 0.6–0.4 Ga. The Upper Triassic strata may be derived from the southern Yangtze and North China blocks due to the collisions between the Indosina, South China and North China blocks, whereas the Jurassic sediments may be partly derived from uplift and erosion of the Jiangnan Orogen due to an intracontinental orogeny induced by Pacific subduction towards the Eurasia Plate. The detrital age spectra and provenance data for basement in the South China Block are analysed and compared with each other. The South China Block has affinity with Australia not only in the Columbia supercontinent but also in the Rodinia supercontinent. We infer the existence of an ancient orogen under the western Jiangnan Orogen, which may have occurred during the Columbia age, earlier than the Sibao orogeny. This is supported by seismic profile proof from the SinoProbe.


Refined Apparent Polar Wander (APW) paths for the North and South China Blocks (ncb and scb) are presented and the collision between the NCB and SCB discussed. We suggest that the amalgamation of the NCB and SCB was completed in the late Triassic-early Jurassic, during the Indosinian Orogeny. This proposed timing is based on an analysis of palaeomagnetic signatures relating to continental collisions, such as the convergence of palaeolatitude, deflections of declination, hairpin-like loops in and superposition of APW paths. Like the Cenozoic India—Eurasia collision, the Mesozoic NCB- SCB collision reactivated ancient faults in eastern China, converting some of them into transcurrent faults, of which the Tan-Lu fault is the most famous.


Sign in / Sign up

Export Citation Format

Share Document