Mesozoic reworking of the Paleozoic subducted continental crust beneath the south-central margin of the North China Block: Geochemical evidence from granites in the Xiaoqinling-Xiong’ershan region

Lithos ◽  
2020 ◽  
pp. 105886
Author(s):  
Jun Guo ◽  
Li-Qun Dai ◽  
Yong-Fei Zheng ◽  
Zi-Fu Zhao
2020 ◽  
Author(s):  
Ruixue Wang ◽  
Qingfei Wang ◽  
I. Tonguç Uysal ◽  
Erick Ramanaidou ◽  
Jun Deng ◽  
...  

Abstract Bauxite is the world’s main source of aluminum and typically consists of gibbsite, boehmite, and minor amounts of diaspore. However, bauxite deposits from the North and South China blocks consist mostly of diaspore and associated minerals, including anatase and illite. Much of this illite is authigenic and occurs as three polytypes (1M, 1Md, and 2M1), with Kübler indices ranging from 0.23 to 0.47 indicating precipitation temperatures of 175° to 300°C. The Raman spectra of anatase show an intensity ratio of <1.5 for G (~1,600 cm–1) and D bands (~1,350 cm–1) diagnostic of organic matter, suggesting its presence during bauxite sedimentation followed by heating (165° to 270°C). The K-Ar ages of authigenic illite from the South China block (178–137 Ma) and the North China block (214–203 Ma) are synchronous with known regional Mesozoic tectono-thermal events generating hydrothermal overprints resulting in (1) the formation of illite, (2) the conversion of some diaspores from thermal of gibbsite and boehmite, and (3) the heating of anatase postsedimentation of the Carboniferous bauxites.


2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Dawei Lv ◽  
Wengui Fan ◽  
John I. Ejembi ◽  
Dun Wu ◽  
Dongdong Wang ◽  
...  

2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

<p>This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25° x 0.25° for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen’s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22°C to 32°C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20°C to 33°C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.</p>


Solid Earth ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1375-1397 ◽  
Author(s):  
Yi Ni Wang ◽  
Wen Liang Xu ◽  
Feng Wang ◽  
Xiao Bo Li

Abstract. To investigate the timing of deposition and provenance of early Mesozoic strata in the northeastern North China Craton (NCC) and to understand the early Mesozoic paleotectonic evolution of the region, we combine stratigraphy, U–Pb zircon geochronology, and Hf isotopic analyses. Early Mesozoic strata include the Early Triassic Heisonggou, Late Triassic Changbai and Xiaoyingzi, and Early Jurassic Yihe formations. Detrital zircons in the Heisonggou Formation yield  ∼ 58 % Neoarchean to Paleoproterozoic ages and  ∼ 42 % Phanerozoic ages and were sourced from areas to the south and north of the basins within the NCC, respectively. This indicates that Early Triassic deposition was controlled primarily by the southward subduction of the Paleo-Asian oceanic plate beneath the NCC and collision between the NCC and the Yangtze Craton (YC). Approximately 88 % of the sediments within the Late Triassic Xiaoyingzi Formation were sourced from the NCC to the south, with the remaining  ∼ 12 % from the Xing'an–Mongolia Orogenic Belt (XMOB) to the north. This implies that Late Triassic deposition was related to the final closure of the Paleo-Asian Ocean during the Middle Triassic and the rapid exhumation of the Su–Lu Orogenic Belt between the NCC and YC. In contrast,  ∼ 88 % of sediments within the Early Jurassic Yihe Formation were sourced from the XMOB to the north, with the remaining  ∼ 12 % from the NCC to the south. We therefore infer that rapid uplift of the XMOB and the onset of the subduction of the Paleo-Pacific Plate beneath Eurasia occurred in the Early Jurassic.


Lithos ◽  
2018 ◽  
Vol 302-303 ◽  
pp. 496-518 ◽  
Author(s):  
Qi-Qi Zhang ◽  
Shuan-Hong Zhang ◽  
Yue Zhao ◽  
Jian-Min Liu

1989 ◽  
Vol 79 (2) ◽  
pp. 252-281
Author(s):  
R. V. Sharp ◽  
K. E. Budding ◽  
J. Boatwright ◽  
M. J. Ader ◽  
M. G. Bonilla ◽  
...  

Abstract The M 6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9 km; the maximum observed surface slip, 12.5 cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M 6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. Surface rupture associated with the second event occurred along three strands of the zone, here named North and South strands of the Superstition Hills fault and the Wienert fault, for 27 km southeastward from the epicenter. In contrast to the left-lateral faulting, which remained unchanged throughout the period of investigation, the right-lateral movement on the Superstition hills fault zone continued to increase with time, a behavior that was similar to other recent historical surface ruptures on northwest-trending faults in the Imperial Valley region. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. Data for each of the 49 sites were used to compute longitudinal displacement profiles for 1 day and to estimate the final displacement that measured slips will approach asymptotically several years after the earthquakes. The maximum right-lateral slip at 1 day was about 50 cm near the south-central part of the North strand of Superstition Hills fault, and the predicted maximum final displacement is probably about 112 cm at Imler Road near the center of the South strand of the Superstition Hills fault. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is about 54 cm. The average left-lateral slip for the conjugate faults trending northeastward is about 23 cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4 km. The southern half of this fault, south of New River, expressed only vertical displacement on a sinuous trace. The maximum vertical slip by the end of the observation period there was about 25 cm, but its growth had not ceased. Photolineaments southeast of the end of new surface rupture suggest continuation of the Superstition Hills fault zone in farmland toward Mexico.


Sign in / Sign up

Export Citation Format

Share Document