The Coles Hill Uranium Deposit, Virginia, USA: Geology, Geochemistry, Geochronology, and Genetic Model

2022 ◽  
Vol 117 (2) ◽  
pp. 273-304
Author(s):  
S. M. Hall ◽  
J. S. Beard ◽  
C. J. Potter ◽  
R. J. Bodnar ◽  
L. A. Neymark ◽  
...  

Abstract The Coles Hill uranium deposit, with an indicated resource of about 130 Mlb of U3O8, is the largest unmined uranium deposit in the United States. The deposit is hosted in the Taconian (approx. 480–450 Ma) Martinsville igneous complex, which consists of the Ordovician Leatherwood Granite (granodiorite) and the Silurian Rich Acres Formation (diorite). The host rock was metamorphosed to orthogneiss during the Alleghanian orogeny (approx. 325–260 Ma), when it also underwent dextral strike-slip movement along the Brookneal shear zone. During the Triassic, extensional tectonics led to the development of the Dan River Basin that lies east of Coles Hill. The mineralized zone is hosted in brittle structures in the footwall of the Triassic Chatham fault that forms the western edge of the basin. Within brittle fracture zones, uranium silicate and uranium-bearing fluorapatite with traces of brannerite form veins and breccia-fill with chlorite, quartz, titanium oxide, pyrite, and calcite. Uranium silicates also coat and replace primary titanite, zircon, ilmenite, and sulfides. Sodium metasomatism preceded and accompanied uranium mineralization, pervasively altering host rock and forming albite from primary feldspar, depositing limpid albite rims on igneous feldspar, altering titanite to titanium oxide and calcite, and forming riebeckite. Various geothermometers indicate temperatures of less than ~200°C during mineralization. In situ U-Pb analyses of titanite, Ti-oxide, and apatite, along with Rb/Sr and U/Pb isotope systematics of whole-rock samples, resolve the timing of geologic processes affecting Coles Hill. The host Leatherwood Granite containing primary euhedral titanite is dated at 450 to 445 Ma, in agreement with previously obtained ages from zircon in the Martinsville igneous complex. A regional metamorphic event at 330 to 310 Ma formed anhedral titanite and some apatite, reequilibrated whole-rock Rb/Sr and U-Pb isotopes, and is interpreted to have coincided with movement along the Brookneal shear zone. During shearing and metamorphism, primary refractory uranium-bearing minerals including titanite, zircon, and uranothorite were recrystallized, and uranium was liberated and mixed locally with hematite, clay, and other fine-grained minerals. Uranium mineralization was accompanied by a metasomatic episode between 250 and 200 Ma that reset the Rb-Sr and U-Pb isotope systems and formed titanium oxide and apatite that are associated and, in places, intimately intergrown with uranium silicate dating mineralization. This event coincides with rifting that formed the Dan River Basin and was a precursor to the breakup of Pangea. The orientation of late-stage tectonic stylolites is compatible with their formation during Late Triassic to Early Jurassic basin inversion, postdating the main stage of uranium mineralization and effectively dating mineralization as Mesozoic. Based on the close spatial and temporal association of uranium with apatite, we propose that uranium was carried as a uranyl-phosphate complex. Uranium was locally reduced by coupled redox reactions with ferrous iron and sulfide minerals in the host rock, forming uranium silicates. The release of calcium during sodium metasomatic alteration of primary calcic feldspar and titanite in the host rock initiated successive reactions in which uranium and phosphate in mineralizing fluids combined with calcium to form U-enriched fluorapatite. Based on the deposit mineralogy, oxygen isotope geochemistry, and trace element characteristics of uranium silicate and gangue minerals, the primary mineralizing fluids likely included connate and/or meteoric water sourced from the adjacent Dan River Basin. High heat flow related to Mesozoic rifting may have driven these (P-Na-F-rich) fluids through local aquifers and into basin margin faults, transporting uranium from the basin or mobilizing uranium from previously formed U minerals in the Brookneal shear zone, or from U-enriched older basement rock.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Saurabh Mittal ◽  
S. P. Sharma ◽  
Arkoprovo Biswas ◽  
D. Sengupta

This study is an attempt to correlate VLF-EM data with the radiometric measurements to decipher the subsurface structure and to locate uranium mineralization in the shear zone. The study area is around Beldih mine which is an open cast apatite mine located on the South Purulia Shear Zone. VLF method has been applied to map the structure and the presence of radioactive minerals has been delineated by the detection of highαandγcounts with respect to the background radiations. High radiation counts and high surfaceγactivity are found just above the higher apparent current-density zones in all the profiles studied, at various locations, indicating uranium and/or thorium mineralization as well as good correlation between these techniques.


Author(s):  
Daniel Peter Ferguson ◽  
Guoxiang Chi ◽  
Charles Normand ◽  
Patrick Ledru ◽  
Odile Maufrais-Smith

The Athabasca Basin in northern Saskatchewan is host to many world-class uranium deposits associated with the unconformity between the Paleoproterozoic sandstone of the basin and the underlying crystalline basement (Jefferson et al., 2007).  While the style and tonnage of these deposits vary, the current genetic model for unconformity-related uranium deposits has been a practical tool for exploration in the Athabasca Basin. However, the factors which control the location and formation of these deposits is still not fully understood. A paragenetic and petrographic study of mineralization along the Midwest Trend, located on the northeastern margin of the Athabasca Basin, aims to refine the current model and to address the general problem: What are the factors which control mineralization and non-mineralization? The Midwest Trend will be used as a "modèle réduit" for uranium mineralization, as it displays many features characteristic of unconformity type deposits. The Midwest Trend comprises three mineral leases that encompass two uranium deposits, the Midwest Main and Midwest A (Allen et al., 2017a, b). Mineralization occurs along a NE-trending graphitic structure, and is hosted by the sandstone, at the unconformity, and in much lesser amounts in the underlying basement rocks. Petrographic observations aided by the use of RAMAN spectroscopy and SEM-EDS, have been used to create a paragenetic sequence of mineralization (Fig.1). Future work will focus on fluid inclusion studies using microthermometry, LA-ICP-MS, and mass spectrometry of contained gases. References:Allen, T., Quirt, D., Masset, O. (2017a). Midwest A Uranium Deposit, Midwest Property, Northern Mining District, Saskatchewan, NTS Map Area 741/8: 2017 Mineral Resource Technical Report. AREVA Resources Canada Inc. Internal Report No. 17-CND-33-01. Allen, T., Quirt, D., Masset, O. (2017b). Midwest Main Uranium Deposit, Midwest Property, Northern Mining District, Saskatchewan, NTS Map Area 741/8: 2017 Mineral Resource Technical Report. AREVA Resources Canada Inc. Internal Report No. 17-CND-33-01. Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D., Cutts, C., Portella, P., and Olson, R.A., 2007: Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta. Geological Survey of Canada, Bulletin 588, p. 23–67.


2020 ◽  
Author(s):  
Sean Hillacre ◽  
Kevin Ansdell ◽  
Brian McEwan

Abstract Recent significant discoveries of uranium mineralization in the southwestern Athabasca basin, northern Saskatchewan, Canada, have been associated with a series of geophysical conductors along a NE- to SW-trending structural zone, termed the Patterson Lake corridor. The Arrow deposit (indicated mineral resource: 256.6 Mlb U3O8; grade 4.03% U3O8) is along this trend, hosted exclusively in basement orthogneisses of the Taltson domain, and is the largest undeveloped uranium deposit in the basin. This study is the first detailed analysis of a deposit along this corridor and examines the relationships between the ductile framework and brittle reactivation of structures, mineral paragenesis, and uranium mineralization. Paragenetic information from hundreds of drill core samples and thin sections was integrated with structural analysis utilizing over 18,000 measurements of various structural features. The structural system at Arrow is interpreted as a partitioned, strike-slip–dominated, brittle-ductile fault system of complex Riedel-style geometry. The system developed along subvertical, NE- to SW-trending dextral high-strain zones formed syn- to post-D3 deformation, which were the focus of extensive premineralization metasomatism (quartz flooding, sericitization, chloritization), within the limb domain of a regional-scale fold structure. These zones evolved through post-Athabasca dextral and sinistral reactivation events, creating brittle fault linkages and dilation zones, allowing for hydrothermal fluid migration and resulting uraninite precipitation and associated alteration (white mica, chlorite, kaolinite, hematite, quartz veins). This study of the structural context of Arrow is important as it emphasizes that protracted reactivation of deep-seated structures and their subsidiaries was a fundamental control on uranium mineralization in the southwestern Athabasca basin.


Sign in / Sign up

Export Citation Format

Share Document