scholarly journals Imaging the tarsal plate: A Mini-Review

2021 ◽  
Vol 14 (2) ◽  
pp. 1-7
Author(s):  
Alberto Recchioni

Imaging the tarsal plate and the meibomian glands (MG) grants new opportunities for ophthalmic practitioners who work in the field of the ocular surface and dry eye across the globe. The secretory role of MG plays a fundamental part in protecting the moisture in front of the eye surface by creating an active shield made of meibum (lipid) which prevents tear evaporation and causes dry eye. Evidence from the most popular Dry Eye Workshop reports (2007 and 2016) demonstrate that MG dysfunction is the first cause of evaporative dry eye which is also the most common cause of dry eye and ocular surface discomfort. Fortunately, during the last years, a plethora of new devices for MG observation, diagnosis and follow-up have been made available in the market. These devices range from invasive to minimally invasive, high to low-tech and from being expensive to low-cost. The objective of this mini-review is to condense the latest evidence in MG imaging by providing a narrative overview on the most common technologies plus some other newer aspects which might guide clinicians and researchers in the field of the ocular surface and dry eye.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Frederick T. Fraunfelder ◽  
James J. Sciubba ◽  
William D. Mathers

The purpose of this paper is to review the possible role of polypharmacy in causing dry eye disease (DED), reflecting the complex interactions and complications associated with the use of multiple systemic and topical ocular medications. The pharmacological, physiological, anatomical, and histological mechanisms causing dry mouth differ little from those causing dry eye. Oral polypharmacy is the most common cause of dry mouth, but has not been investigated as a cause of dry eye. Topical ocular polypharmacy has been shown to cause DED. Information on drugs that likely cause or aggravate DED and the controversial role of preservatives in topical ocular medications are examined. Systemic or topical ocular medications and preservatives used in topical ocular drugs may cause dry eye through the drug's therapeutic action, ocular surface effects, or preservatives, and the effects probably are additive. Long-term use of topical ocular medications, especially those containing preservatives such as BAK, may play an important role in DED and the role of polypharmacy needs further study. We review possible ways to decrease the risk of medication-related dry eye.


2021 ◽  
pp. 112972982110346
Author(s):  
Meola Mario ◽  
Jose Ibeas ◽  
Jan Malik

Physical examination (PE) is considered the backbone before vascular access (VA) placement, during maturation period and for follow-up. However, it may be inadequate in identifying suitable vasculature, mainly in comorbid patients, or in detecting complications. This review highlights the advantages of ultrasound imaging to manage VA before placement, during maturation and follow-up. Furthermore, it analyses the future perspectives in evaluating early and late VA complications thank to the availability of multiparametric platforms, point of care of ultrasound, and portable/wireless systems. Technical improvements and low-cost systems should favor the widespread ultrasound-based VA surveillance programs. This significant turning point needs an adequate training of nephrologists and dialysis nurses and the standardization of exams, parameters, and procedures.


2019 ◽  
Vol 71 ◽  
pp. 68-87 ◽  
Author(s):  
Christophe Baudouin ◽  
Maurizio Rolando ◽  
Jose M. Benitez Del Castillo ◽  
Elisabeth M. Messmer ◽  
Francisco C. Figueiredo ◽  
...  

Author(s):  
Vidya K. Sudarshan ◽  
Joel E. W. Koh ◽  
U. Rajendra Acharya ◽  
Jen Hong Tan ◽  
Muthu Rama Krishnan Mookiah ◽  
...  

2018 ◽  
Vol 315 (2) ◽  
pp. C236-C246 ◽  
Author(s):  
Donald G. Puro

Optimal vision requires an ocular surface with a stable tear film whose many critical tasks include providing >70% of the eye’s refractive power. However, for millions, tear film instability produces uncomfortable sight-impairing dry eye. Despite the multitude of etiologies for dry eye, a universal hallmark is hyperosmolarity of the tear film. Presently, knowledge of how the ocular surface responds to hyperosmolarity remains incomplete with little understood about the role of ion channels. This bioelectric analysis focused on conjunctival goblet cells whose release of tear-stabilizing mucin is a key adaptive response to dry eye. In freshly excised rat conjunctiva, perforated-patch recordings demonstrated that a ≥10% rise in osmolarity triggers goblet cells to rapidly generate a ~15-mV hyperpolarization due to the oxidant-dependent activation of ATP-sensitive K+ (KATP) channels. High-resolution membrane capacitance measurements used to monitor exocytosis revealed that this hyperpolarization results in an approximately fourfold boost in exocytotic activity evoked by cholinergic input, which in vivo occurs via a neural reflex and depends chiefly on calcium influxing down its electro-gradient. We discovered that this adaptive response is transient. During 30–80 min of hyperosmolarity, development of a depolarizing nonspecific cation conductance fully counterbalances the KATP-driven hyperpolarization and thereby eliminates the exocytotic boost. We conclude that hyperosmotic-induced hyperpolarization is a previously unappreciated mechanism by which goblet cells respond to transient ocular dryness. Loss of this voltage increase during long-term dryness/hyperosmolarity may account for the clinical conundrum that goblet cells in chronically dry eyes can remain filled with mucin even though the tear film is hyperosmotic and mucin-deficient.


Author(s):  
Dorota Kopacz ◽  
Łucja Niezgoda ◽  
Ewa Fudalej ◽  
Anna Nowak ◽  
Piotr Maciejewicz

The tear film is a thin fluid layer covering the ocular surface. It is responsible for ocular surface comfort, mechanical, environmental and immune protection, epithelial health and it forms smooth refractive surface for vision. The traditional description of the tear film divides it into three layers: lipid, aqueous and mucin. The role of each layer depends on the composition of it. Tear production, evaporation, absorption and drainage concur to dynamic balance of the tear film and leads to its integrity and stability. Nonetheless, this stability can be disturb in tear film layers deficiencies, defective spreading of the tear film, in some general diseases and during application of some general and/or topical medications. Dry eye disease is the result of it. In this review not only physiology of the tear film is presented. Moreover, we would like to discuss the influence of various diseases and conditions on the tear film and contrarily, spotlight tear film disorders as a manifestation of those diseases.


2020 ◽  
Vol 40 (11) ◽  
pp. 3049-3058
Author(s):  
Xingdi Wu ◽  
Xiang Chen ◽  
Yajuan Ma ◽  
Xueqi Lin ◽  
Xuewen Yu ◽  
...  

Abstract Purpose To compare the levels of inflammatory molecules in tear samples between patients with meibomian gland dysfunction (MGD)-related evaporative dry eye (EDE) and healthy subjects and to analyze the correlations between the levels of tear inflammatory molecules and ocular surface parameters. Methods A total of 30 MGD-related EDE patients (48 eyes) and ten healthy volunteers (15 eyes) were enrolled. Dry eye-related examinations and questionnaires were obtained from all participants. The levels of nine inflammatory molecules were determined through multiplex bead analysis. Results Inflammatory molecules including ICAM-1, IFN-γ, CXCL8/IL-8, IL-6, TNF-α and IL-12p70 were detected in 100% of the patients, while IL-1α, IL-1β and IL-10 were detected in 56.25%, 13.60% and 45.83% of the patients, respectively. Moreover, ICAM-1, IL-8, IL-6, TNF-α, IL-12p70 and IFN-γ were detected in 86.67–100% of the healthy subjects, and the detection rates of IL-10, IL-1α and IL-1β were below 50%. The levels of IL-8, IL-6, IFN-γ and ICAM-1 were significantly higher in the patient group compared with the control group. In addition, IL-8 and IL-6 were negatively correlated with Schirmer I test. Besides, IFN-γ was negatively correlated with tear film breakup time. Furthermore, ICAM-1 and IL-6 were positively correlated with meibography score. Conclusions Collectively, patients with MGD-related EDE had higher levels of inflammatory molecules in their tears, and some molecules were correlated with ocular surface parameters. These findings suggested that inflammation played an important role in MGD-related EDE, and several inflammatory molecules could be used in the diagnosis and the treatment of MGD-related EDE.


2014 ◽  
Vol 07 (02) ◽  
pp. 104 ◽  
Author(s):  
Mitchell A Jackson ◽  

The complex strategy to understanding dry eye syndrome has led to a widespread change in approaching this condition as an ocular surface disease, stratified as evaporative dry eye, aqueous deficient dry eye, and ocular allergy. The diagnostic armamentarium has vastly expanded to include tear osmolarity and inflammatory markers as redefined by the new International Dry Eye WorkShop (DEWS) in 2007. The Tear Film & Ocular Surface Society (TFOS) panel on meibomian gland dysfunction (MGD) further expanded the interpretation of evaporative dry eye and its therapeutic options, including the newest US Food and Drug Administration (FDA)-approved device known as LipiFlow Thermal Pulsation System. This paper will give an overview on understanding dry eye disease, its etiology, diagnostic methods, and current therapeutic options.


Sign in / Sign up

Export Citation Format

Share Document