conjunctival goblet cells
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 32)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 100 (S267) ◽  
Author(s):  
Pernille Rævdal ◽  
Anne Hedengran Nagstrup ◽  
Jacob Pontoppidan Thyssen ◽  
Steffen Heegaard ◽  
Miriam Kolko

2022 ◽  
Vol 100 (S267) ◽  
Author(s):  
Olivia Müllertz ◽  
Anne Nagstrup ◽  
Zaynab Ahmad Mouhammad ◽  
Josefine Clement Freiberg ◽  
Richard Nagymihaly ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 141
Author(s):  
Menglu Yang ◽  
Nora Botten ◽  
Robin Hodges ◽  
Jeffrey Bair ◽  
Tor P. Utheim ◽  
...  

Resolvin (Rv) D2 and RvD1 are biosynthesized from docosahexaenoic acid (DHA) and promote resolution of inflammation in multiple organs and tissues, including the conjunctiva. Histamine is a mediator produced by mast cells in the conjunctiva during the allergic response. We determined the interaction of RvD2 with histamine and its receptor subtypes in cultured conjunctival goblet cells and compared them with RvD1 by measuring intracellular [Ca2+] and mucous secretion. Treatment with RvD2 significantly blocked the histamine-induced [Ca2+]i increase as well as secretion. RvD2 and RvD1 counter-regulate different histamine receptor subtypes. RvD2 inhibited the increase in [Ca2+]i induced by the activation of H1, H3, or H4 receptors, whereas RvD1 inhibited H1 and H3 receptors. RvD2 and RvD1 also activate distinct receptor-specific protein kinases to counter-regulate the histamine receptors, probably by phosphorylation. Thus, our data suggest that the counter-regulation of H receptor subtypes by RvD2 and RvD1 to inhibit mucin secretion are separately regulated.


2021 ◽  
Vol 22 (19) ◽  
pp. 10528
Author(s):  
Sara I. Van Acker ◽  
Bert Van den Bogerd ◽  
Zoë P. Van Acker ◽  
Agnė Vailionytė ◽  
Michel Haagdorens ◽  
...  

One key element to the health of the ocular surface encompasses the presence of gel-forming mucins in the pre-ocular tear film. Conjunctival goblet cells are specialized epithelial cells that secrete mucins necessary for tear film stability and general homeostasis. Their dysfunction can be linked to a range of ocular surface inflammation disorders and chronic injuries. To obtain new perspectives and angles to tackle mucin deficiency, the need for an accurate evaluation of their presence and corresponding mucin secretion in ex vivo conjunctival cultures has become a requisite. In vitro, goblet cells show a significant decrease in the production and secretion of gel-forming mucins, accompanied by signs of dedifferentiation or transdifferentiation. Explant cultures on laminin-treated CLP-PEG hydrogels can, however, support the production of gel-forming mucins. Together, we challenge the current paradigm to evaluate the presence of cultured goblet cells solely based on their general mucin (MUC) content through imaging analyses, showing the need for additional techniques to assess the functionality of goblet cells. In addition, we broadened the gel-forming mucin profile of in vivo goblet cells with MUC5B and MUC6, while MUC2 and MUC6 is added to the profile of cultured goblet cells.


2021 ◽  
pp. 69-75
Author(s):  
Anne Hedengran ◽  
Xenia Begun ◽  
Olivia Müllertz ◽  
Zaynab Mouhammad ◽  
Rupali Vohra ◽  
...  

<b><i>Introduction:</i></b> Most intraocular pressure (IOP)-lowering eye drops are preserved with benzalkonium chloride (BAK). This can increase side effects and decrease adherence. Particularly, damage to the mucin-producing conjunctival goblet cells may be an issue due to instability of the tear film. We aimed to investigate the effect of IOP-lowering eye drops preserved with BAK on cultured human conjunctival goblet cells. <b><i>Methods:</i></b> Eye drops Brimonidine Tartrate Teva (BT) with 0.005% BAK, Dorzolamide Stada (DS) with 0.0075% BAK, Optimol<sup>®</sup> (OP) with 0.01% BAK, and Latanoprost Teva (LT) with 0.02% BAK were included. Human primary cultured goblet cell survival was evaluated using a lactate dehydrogenase assay on human goblet cells after treatment for 30 min and 6 h with the different anti-glaucoma drug formulations. <b><i>Results:</i></b> All eye drops examined, except BT, reduced goblet cell survival. The impact of eye drops on goblet cell viability was correlated with the time of exposure as well as to the concentration of BAK. After 30 min of exposure, cell viability was 93% for BT (0.005% BAK; <i>p</i> = 0.93), 71% for DS (0.0075% BAK; <i>p</i> = 0.067), 70% for OP (0.01% BAK; <i>p</i> = 0.054), and 69% for LT (0.02% BAK; <i>p</i> = 0.022), and exposure for 6 h reduced cell survival to 74% for BT (<i>p</i> = 0.217), 52% for DS (<i>p</i> = 0.011), 34% for OP (<i>p</i> = 0.017), and 31% for LT (<i>p</i> = 0.0007). <b><i>Conclusion:</i></b> LT, OP, and DS reduced human goblet cell survival in a time-dependent manner. BT did not affect goblet cell survival. Cell survival was correlated with the BAK concentration in the eye drops making 0.02% BAK-preserved LT most toxic and 0.005% BAK-preserved BT least toxic. Based on the present study, decreasing BAK in eye drops for chronic use seems important to reduce damage to the goblet cells. However, future studies are needed to further explore this finding.


2021 ◽  
Vol 22 (13) ◽  
pp. 6935
Author(s):  
Donald G. Puro

By providing ~70% of the eye’s refractive power, the preocular tear film is essential for optimal vision. However, its integrity is often jeopardized by environmental and pathologic conditions that accelerate evaporation and cause sight-impairing dry eye. A key adaptive response to evaporation-induced tear film hyperosmolarity is the reflex-triggered release of tear-stabilizing mucin from conjunctival goblet cells. Here, we review progress in elucidating the roles of ion channels in mediating this important exocytotic response. Much is now known about the modulatory impact of ATP-sensitive potassium channels, nonspecific cation channels and voltage-gated calcium channels. Recently, we discovered that during unremitting extracellular hyperosmolarity, P2X7 receptor/channels also become activated and markedly impair goblet cell viability. However, our understanding of possible adaptive benefits of this P2X7 activation remains limited. In the present study, we utilized high-temporal resolution membrane capacitance measurements to monitor the exocytotic activity of single goblet cells located in freshly excised rat conjunctiva. We now report that activation of P2X7 purinoceptors boosts neural-evoked exocytosis and accelerates replenishment of mucin-filled granules after exocytotic depletion. Thus, P2X7 activation exerts a yin-yang effect on conjunctival goblet cells: the high-gain benefit of enhancing the supply of tear-stabilizing mucin is implemented at the high-risk of endangering goblet cell survival.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Jeffrey Bair ◽  
Robin Hodges ◽  
Morton Magno ◽  
Menglu Yang ◽  
Tor Utheim ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Anne V. Lyngstadaas ◽  
Markus V. Olsen ◽  
Jeffrey A. Bair ◽  
Robin R. Hodges ◽  
Tor P. Utheim ◽  
...  

The amount of mucin secreted by conjunctival goblet cells is regulated to ensure the optimal level for protection of the ocular surface. Under physiological conditions lipid specialized pro-resolving mediators (SPM) are essential for maintaining tissue homeostasis including the conjunctiva. The protein Annexin A1 (AnxA1) can act as an SPM. We used cultured rat conjunctival goblet cells to determine if AnxA1 stimulates an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion and to identify the signaling pathways. The increase in [Ca2+]i was determined using fura2/AM and mucin secretion was measured using an enzyme-linked lectin assay. AnxA1 stimulated an increase in [Ca2+]i and mucin secretion that was blocked by the cell-permeant Ca2+ chelator BAPTA/AM and the ALX/FPR2 receptor inhibitor BOC2. AnxA1 increased [Ca2+]i to a similar extent as the SPMs lipoxin A4 and Resolvin (Rv) D1 and histamine. The AnxA1 increase in [Ca2+]i and mucin secretion were inhibited by blocking the phospholipase C (PLC) pathway including PLC, the IP3 receptor, the Ca2+/ATPase that causes the intracellular Ca2+ stores to empty, and blockade of Ca2+ influx. Inhibition of protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase also decreased the AnxA1-stimulated increase in [Ca2+]i and mucin secretion. In contrast inhibitors of ERK 1/2, phospholipase A2 (PLA2), and phospholipase D (PLD) did not alter AnxA1-stimulated increase in [Ca2+]i, but did inhibit mucin secretion. Activation of protein kinase A did not decrease either the AnxA1-stimulated rise in [Ca2+]i or secretion. We conclude that in health, AnxA1 contributes to the mucin layer of the tear film and ocular surface homeostasis by activating the PLC signaling pathway to increase [Ca2+]i and stimulate mucin secretion and ERK1/2, PLA2, and PLD to stimulate mucin secretion from conjunctival goblet cells.


2021 ◽  
Vol 205 ◽  
pp. 108501
Author(s):  
Ruiqi Ma ◽  
Lu Gan ◽  
Sanjie Jiang ◽  
Peiwen Ding ◽  
Dongsheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document