DESIGN DEVELOPMENT AND OPTIMIZATION OF A SUSTAINED RELEASE TABLET OF BOSENTAN MONOHYDRATE FOR PULMONARY ARTERIAL HYPERTENSION

INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (03) ◽  
pp. 61-67
Author(s):  
P. P Dighe ◽  
H. M Tank ◽  

Pulmonary arterial hypertension (PAH) means high blood pressure in the lungs caused by obstruction in the small arteries of the lungs.The current study involves the fabrication of oral matrix sustained release tablet of bosentan monohydrate, a dual endothelin receptor antagonist, the optimisation of its in vitro release and characterisation. Methocel K4M PremiumDC2, a directly compressible HPMC grade, has been used as the sustained release polymer. Pregelatinised starch is used as a diluent and release modifier and sodium lauryl sulphate as a solubiliser. The influence of the above variables on drug release is measured using a 23 factorial design using design expert software. Surface response plots show significant interaction among the formulation variables, thus aiding in optimization of bilayer tablet.

INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (02) ◽  
pp. 26-32
Author(s):  
N. S Ranpise ◽  
◽  
S. S. Somavanshi ◽  
R. K Bhujbal . ◽  
Y. M. Jagtap

The aim of present work was to develop a metformin hydrochloride sustained release tablet by aqueous coating. Eudragit RL and Eudragit RS were used for coating of tablets. Eudragit RL having 10% and Eudragit RS having 5% of functional quaternary ammonium groups, which give rise to pH independent permeability of the polymer. Metformin hydrochloride uncoated tablets were prepared by wet granulation technique. Tablets were coated with blends of Eudragit RS30D and Eudragit RL30D in 5:1 and in 3:1 ratios at different coating level viz. 7%, 5%, 3%, 1.5%, 1%. Two dissolution media: pH 1.2 and pH 6.8 phosphate buffer were employed for in vitro release behaviors of metformin hydrochloride tablets. Coating with blends of Eudragit RS 30D and Eudragit RL 30D in 5:1 and in 3:1 ratio at 1% and at 3% showed sustained release effect for 12 h. The two Eudragit polymers with different features as coating materials produced the desired results.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Oliver ◽  
S.F Rocha ◽  
M Spaczynska ◽  
D.V Lalama ◽  
M Gomez ◽  
...  

Abstract Background Endothelial dysfunction is one of the most important hallmarks of pulmonary arterial hypertension (PAH). This leads to anomalous production of vasoactive mediators that are responsible for a higher vascular tone and a subsequent increase in pulmonary artery pressure (PAP), and to an increased vascular permeability that favors perivascular inflammation and remodeling, thus worsening the disease. Therefore, preservation of the endothelial barrier could become a relevant therapeutic strategy. Purpose In previous studies, others and we have suggested the pharmacological activation of the β3-adrenergic receptor (AR) as a potential therapeutic strategy for pulmonary hypertension (PH) due to left heart disease. However, its potential use in other forms of PH remain unclear. The aim of the present study was to elucidate whether the β3-AR agonist mirabegron could preserve pulmonary endothelium function and be a potential new therapy in PAH. Methods For this purpose, we have evaluated the effect of mirabegron (2 and 10 mg/kg·day) in different animal models, including the monocrotaline and the hypoxia-induced PAH models in rats and mice, respectively. Additionally, we have used a transgenic mouse model with endothelial overexpression of human β3-AR in a knockout background, and performed in vitro experiments with human pulmonary artery endothelial cells (HPAECs) for mechanistic experiments. Results Our results show a dose dependent effect of mirabegron in reducing mean PAP and Right Ventricular Systolic Pressure in both mice and rats. In addition, the use of transgenic mice has allowed us to determine that pulmonary endothelial cells are key mediators of the beneficial role of β3-AR pathway in ameliorating PAH. Mechanistically, we have shown in vitro that activation of β3-AR with mirabegron protects HPAECs from hypoxia-induced ROS production and mitochondrial fragmentation by restoring mitochondrial fission/fusion dynamics. Conclusions This protective effect of mirabegron would lead to endothelium integrity and preserved pulmonary endothelial function, which are necessary for a correct vasodilation, avoiding increased permeability and remodeling. Altogether, the current study demonstrates a beneficial effect of the β3-AR agonist mirabegron that could open new therapeutic avenues in PAH. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Programa de Atracciόn de Talento, Comunidad de Madrid


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
France Dierick

AIM: PW1+ progenitors were identified in various adult tissues and can differentiate in smooth muscle cells (SMC) in vitro. Our hypothesis is that PW1+ progenitors are recruited to participate in the vascular remodeling during pulmonary arterial hypertension (PAH). METHODS: PW1IRESnLacZ+/- mice express the β-galactosidase as a reporter gene for PW1 expression allowing to follow the lineage of PW1+ cells during a few days. These mice were exposed to chronic hypoxia (CH) to induce PAH, lung vessels neomuscularisation and SMC proliferation. PW1+ and β-Gal+ cells were studied by FACS and by immunofluorescence. RESULTS: PW1+ cells are localized in the lung parenchyma and in the perivascular zone in rodent and human lung. Two PW1+ populations were identified by flow cytometry in the mouse lung 1/ a Sca-1high/CD34high/PDGFR-α+ population which differentiates into calponin+ or α-SMA+ SMC and into vWF+ endothelial cell and 2/ a CD34-/CD146+ population expressing pericyte markers. After 2-4 days of CH, the number of lung PW1+ cells is increased (x3.5, p<0.01) and, in small pulmonary vessels media, the proportion of β-Gal+ SMC derived from PW1+ cells is increased (64±6% vs 35±3%, p<0.05) suggesting a recruitment and differentiation of PW1+ cells into lung vascular SMC. Moreover WT mice irradiated and engrafted with GFP+/β-Gal+ bone marrow cells do not show any increase in GFP+ SMC in lung vessels and do not show any β-Gal+ cells in the lung indicating that the lung PW1+ progenitors are not derived from bone marrow . Moreover, in the human PAH lung, PW1+ cells were observed in remodeled vascular structures: in the media of remodeled vessel and in plexiform lesions. CONCLUSION: These results suggest that lung resident PW1+ progenitors are recruited to participate in the vascular remodeling of small pulmonary vessels in experimental and human PAH. These progenitors show characteristics of pericytes and of vascular progenitors.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gopinath Sutendra ◽  
Sebastien Bonnet ◽  
Paulette Wright ◽  
Peter Dromparis ◽  
Alois Haromy ◽  
...  

Nogo was first identified as an inhibitor of neuronal axonal regeneration. Recently, Nogo-B was implicated in the proliferative and anti-apoptotic remodeling in systemic arteries; reduced Nogo-B expression was seen in remodeled mouse femoral arteries following injury. Pulmonary arterial hypertension (PAH) is also characterized by proliferative/anti-apoptotic remodeling in pulmonary arteries (PA), sparing systemic vessels. PAH PA smooth muscle cells (PASMC) are characterized by mitochondrial hyperpolarization (increased ΔΨm), decreased production of reactive oxygen species (ROS) (suppressing mitochondria-dependent apoptosis), down-regulation of Kv1.5 and activation of the transcription factor NFAT (promoting contraction and proliferation). We found that in contrast to systemic vessels, Nogo-B expression is significantly increased in vivo and in vitro in PAs and PASMCs from patients (n=6) and mice (n=42) with PAH, compared to normals. We hypothesized that Nogo is involved in the pathogenesis of PAH . Nogo −/− mice (n=7) had a normal phenotype and, in contrast to Nogo +/+ , did not develop chronic hypoxia (CH)-induced PAH assessed invasively (catheterization, RV/LV+Septum) and non-invasively (pulmonary artery acceleration time and treadmill performance) (n=7, Table ). CH- Nogo +/+ PASMC had the expected increase in ΔΨm (measured by TMRM), decreased ROS (MitoSOX), increased [Ca ++ ] i (FLUO3), decreased Kv1.5 (immunohistochemistry) and NFAT activation (nuclear translocation). None of these changes occurred in CH- Nogo −/− PASMC while all were induced in normoxic Nogo +/+ PASMC by adenoviral over-expression of Nogo-B . Heterozygote CH- Nogo +/− (n=7) values were between Nogo −/− and Nogo +/+ suggesting a gene dose-dependent effect. Nogo is over-expressed in human and rodent PAH and induces critical features of the PAH phenotype. Nogo targeting might represent a novel and selective therapeutic strategy for PAH. Table


2019 ◽  
Vol 317 (3) ◽  
pp. L369-L380 ◽  
Author(s):  
Olivia R. Stephens ◽  
Kelly Weiss ◽  
Matthew Frimel ◽  
Jonathan A. Rose ◽  
Yu Sun ◽  
...  

The β-adrenergic receptor (βAR) exists in an equilibrium of inactive and active conformational states, which shifts in response to different ligands and results in downstream signaling. In addition to cAMP, βAR signals to hypoxia-inducible factor 1 (HIF-1). We hypothesized that a βAR-active conformation (R**) that leads to HIF-1 is separable from the cAMP-activating conformation (R*) and that pulmonary arterial hypertension (PAH) patients with HIF-biased conformations would not respond to a cAMP agonist. We compared two cAMP agonists, isoproterenol and salbutamol, in vitro. Isoproterenol increased cAMP and HIF-1 activity, while salbutamol increased cAMP and reduced HIF-1. Hypoxia blunted agonist-stimulated cAMP, consistent with receptor equilibrium shifting toward HIF-activating conformations. Similarly, isoproterenol increased HIF-1 and erythropoiesis in mice, while salbutamol decreased erythropoiesis. βAR overexpression in cells increased glycolysis, which was blunted by HIF-1 inhibitors, suggesting increased βAR leads to increased hypoxia-metabolic effects. Because PAH is also characterized by HIF-related glycolytic shift, we dichotomized PAH patients in the Pulmonary Arterial Hypertension Treatment with Carvedilol for Heart Failure trial (NCT01586156) based on right ventricular (RV) glucose uptake to evaluate βAR ligands. Patients with high glucose uptake had more severe disease than those with low uptake. cAMP increased in response to isoproterenol in mononuclear cells from low-uptake patients but not in high-uptake patients’ cells. When patients were treated with carvedilol for 1 wk, the low-uptake group decreased RV systolic pressures and pulmonary vascular resistance, but high-uptake patients had no physiologic responses. The findings expand the paradigm of βAR activation and uncover a novel PAH subtype that might benefit from β-blockers.


2020 ◽  
pp. 1902061
Author(s):  
David Macias ◽  
Stephen Moore ◽  
Alexi Crosby ◽  
Mark Southwood ◽  
Xinlin Du ◽  
...  

Pulmonary Arterial Hypertension (PAH) is a destructive disease of the pulmonary vasculature often leading to right heart failure and death. Current therapeutic intervention strategies only slow disease progression. The role of aberrant HIF2α stability and function in the initiation and development of pulmonary hypertension (PH) has been an area of intense interest for nearly two decades.Here we determine the effect of a novel HIF2α inhibitor (PT2567) on PH disease initiation and progression, using two pre-clinical models of PH. Haemodynamic measurements were performed followed by collection of heart, lung and blood for pathological, gene expression and biochemical analysis. Blood outgrowth endothelial cells from IPAH patients were used to determine the impact of HIF2α-inhibition on endothelial function.Global inhibition of HIF2a reduced pulmonary vascular haemodynamics and pulmonary vascular remodelling in both su5416/hypoxia prevention and intervention models. PT2567 intervention reduced the expression of PH associated target genes in both lung and cardiac tissues and restored plasma nitrite concentration. Treatment of monocrotaline exposed rodents with PT2567 reduced the impact on cardiovascular haemodynamics and promoted a survival advantage. In vitro, loss of HIF2α signalling in human pulmonary arterial endothelial cells suppresses target genes associated with inflammation, and PT2567 reduced the hyper-proliferative phenotype and over-active arginase activity in blood outgrowth endothelial cells from IPAH patients. These data suggest that targeting HIF2α hetero-dimerisation with an orally bioavailable compound could offer a new therapeutic approach for PAH. Future studies are required to determine the role of HIF in the heterogeneous PAH population.


2020 ◽  
Vol 319 (2) ◽  
pp. H377-H391 ◽  
Author(s):  
Si Lei ◽  
Fei Peng ◽  
Mei-Lei Li ◽  
Wen-Bing Duan ◽  
Cai-Qin Peng ◽  
...  

Smooth muscle-enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.


Sign in / Sign up

Export Citation Format

Share Document