SYNTHESIS AND ANTI-HIV EVALUATION OF SUBSTITUTED INDOLE-3-CARBALDEHYDE DERIVATIVES

INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (02) ◽  
pp. 18-26
Author(s):  
Pankaj Wadhwa ◽  
Priti Jain ◽  
Hemant R Jadhav

In the present study, a series of indole-3-carbaldehydes having substituted N-sulfonyl phenyl or Nphenacyl group was synthesized and evaluated for anti-HIV activity, in particular, in vitro and in silico HIV-1 integrase inhibition. Three compounds (8b, 8c and 8g) exhibited significant inhibition of HIV-1 IN (IC50 ≤5.32 μM). Molecular docking studies were also performed to justify the IN inhibition and in vitro in silico correlation was drawn. Compound 8b exhibited significant anti-HIV activity against HIV-1 strain IIIB (IC50 3.16 μM). HIV integrase inhibitors are also reported to inhibit reverse transcriptase. When 8b was further examined against various single and double mutant reverse transcriptase (RT) strains, it showed promising activity against E138K with IC50 value of 2.43 μM with safety index of 3. Therefore, compound 8b can be a starting point for the development of dual inhibitors of HIV integrase as well as reverse transcriptase.

2019 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Pankaj Wadhwa ◽  
Priti Jain ◽  
Arpit Patel ◽  
Shantanu Shinde ◽  
Hemant R. Jadhav

<P>Background: A series of novel 3-(1,3-dioxoisoindolin-2-yl)-N-substituted phenyl benzamide derivatives was synthesized and tested in vitro against human immunodeficiency virus type-1 Integrase (HIV-1 IN). Methods: Out of the 18 analogues, six (compounds 16c, 16h, 16i, 16m, 16n and 16r) showed significant inhibition of strand transfer by HIV-1 integrase. For these six compounds. IC50 was below 5.0 µM. In silico docking studies revealed that the presence of 2-phenyl isoindoline-1,3-dione motif was essential as it was found to interact with active site magnesium. Results: To further confirm the results, cell-based HIV-1 and HIV-2 inhibitory assay was carried out. Conclusion: These compounds possess structural features not seen in previously reported HIV-1 integrase inhibitors and thus can help further optimization of anti-HIV-1 integrase activity.</P>


2021 ◽  
Vol 14 (11) ◽  
pp. 1115
Author(s):  
Chanin Sillapachaiyaporn ◽  
Panthakarn Rangsinth ◽  
Sunita Nilkhet ◽  
Nuntanat Moungkote ◽  
Siriporn Chuchawankul

Human immunodeficiency virus type-1 (HIV-1) infection causes acquired immunodeficiency syndrome (AIDS). Currently, several anti-retroviral drugs are available, but adverse effects of these drugs have been reported. Herein, we focused on the anti-HIV-1 activity of Curcuma aeruginosa Roxb. (CA) extracted by hexane (CA-H), ethyl acetate (CA-EA), and methanol (CA-M). The in vitro HIV-1 protease (PR) and HIV-1 reverse transcriptase (RT) inhibitory activities of CA extracts were screened. CA-M potentially inhibited HIV-1 PR (82.44%) comparable to Pepstatin A (81.48%), followed by CA-EA (67.05%) and CA-H (47.6%), respectively. All extracts exhibited moderate inhibition of HIV-1 RT (64.97 to 76.93%). Besides, phytochemical constituents of CA extracts were identified by GC-MS and UPLC-HRMS. Fatty acids, amino acids, and terpenoids were the major compounds found in the extracts. Furthermore, drug-likeness parameters and the ability of CA-identified compounds on blocking of the HIV-1 PR and RT active sites were in silico investigated. Dihydroergocornine, 3β,6α,7α-trihydroxy-5β-cholan-24-oic acid, and 6β,11β,16α,17α,21-Pentahydroxypregna-1,4-diene-3,20-dione-16,17-acetonide showed strong binding affinities at the active residues of both HIV-1 PR and RT. Moreover, antioxidant activity of CA extracts was determined. CA-EA exhibited the highest antioxidant activity, which positively related to the amount of total phenolic content. This study provided beneficial data for anti-HIV-1 drug discovery from CA extracts.


2018 ◽  
Vol 4 (1) ◽  
pp. 57-66
Author(s):  
Ruswanto Ruswanto ◽  
Tifa Nofianti ◽  
Richa Mardianingrum ◽  
Tresna Lestari

Kuwanon-H merupakan senyawa flavonoid dari kulit akar  murbei (Morus alba L) yang secara in vitro berpotensi sebagai anti-HIV dibanding senyawa flavonoid lainnya yang terkandung dalam kulit akar murbei seperti morusin dan morusin 4′-glucosida. Telah dilakukan penelitian desain senyawa, penambatan molekular menggunakan ArgusLab 4.0.1 dengan metode ArgusDock, penerapan aturan Lipinski’s Rule of Five menggunakan Marvin Sketch 5.2.5.1dan uji toksisitas menggunakan aplikasi Toxtree secara in silico terhadap turunan senyawa kuwanon-H. Desain enam puluh senyawa turunan kuwanon-H dilakukan dengan cara model pendekatan Topliss pada rantai samping alifatiknya. Hasil penambatan ke-60 turunan senyawa pada reseptor HIV-1 Reverse Transcriptase (1REV) menunjukkan bahwa senyawa terbaik yaitu 3-[(2Z)-3-(siklopropilmetil)but-2-en-1-il]-8-[6-({3-[(2Z)-3-(siklopropilmetil)but-2-en-1-il]-2,4-dihidroksifenil}karbonil)-5-(2,4-di-hidroksilfenil)-3-metilsiklohek-2-en-1-il]-2-(2,4-dihidroksilfenil),7-dihidroksi-4H-kromen-4-on dengan nilai energi bebas yang lebih rendah (-12.5798 kkal/mol) dibandingkan ligan asli (-11.0445 kkal/mol) dan kuwanon-H (-11.0189 kkal/mol). Senyawa terbaik ini tidak memenuhi aturan Lipinski’s Rule of Five. Hasil prediksi uji toksisitas senyawa terbaik menurut parameter Cramer Rules termasuk kategori III, yaitu diprediksi memiliki toksisitas tinggi, menurut parameter Benigni/Bossa Rulebase diprediksi senyawa yang diuji tidak bersifat karsinogenik, genotoksik, dan nongenotoksik, sedangkan menurut parameter Kroes TTC decision tree diprediksi senyawa uji berpotensi toksik.DOI:http://dx.doi.org/10.15408/jkv.v4i1.6867 


2021 ◽  
Vol 14 (10) ◽  
pp. 1009
Author(s):  
Winnie Rotich ◽  
Nicholas J. Sadgrove ◽  
Eduard Mas-Claret ◽  
Guillermo F. Padilla-González ◽  
Anastasia Guantai ◽  
...  

CareVid is a multi-herbal product used in southwest Kenya as an immune booster and health tonic and has been anecdotally described as improving the condition of HIV-positive patients. The product is made up of roots, barks and whole plant of 14 African medicinal plants: Acacia nilotica (L.) Willd. ex Delile (currently, Vachelia nilotica (L.) P.J.H Hurter & Mabb.), Adenia gummifera (Harv.) Harms, Anthocleista grandiflora Gilg, Asparagus africanus Lam., Bersama abyssinica Fresen., Clematis hirsuta Guill. & Perr., Croton macrostachyus Hochst. ex Delile, Clutia robusta Pax (accepted as Clutia kilimandscharica Engl.), Dovyalis abyssinica (A. Rich.) Warb, Ekebergia capensis Sparm., Periploca linearifolia Quart.-Dill. & A. Rich., Plantago palmata Hook.f., Prunus africana Hook.f. Kalkman and Rhamnus prinoides L’Her. The objective of this study was to determine the major chemical constituents of CareVid solvent extracts and screen them for in vitro and in silico activity against the HIV-1 reverse transcriptase enzyme. To achieve this, CareVid was separately extracted using CH2Cl2, MeOH, 80% EtOH in H2O, cold H2O, hot H2O and acidified H2O (pH 1.5–3.5). The extracts were analysed using HPLC–MS equipped with UV diode array detection. HIV-1 reverse transcriptase inhibition was performed in vitro and compared to in silico HIV-1 reverse transcriptase inhibition, with the latter carried out using MOE software, placing the docking on the hydrophobic pocket in the subdomain of p66, the NNRTI pocket. The MeOH and 80% EtOH extracts showed strong in vitro HIV-1 reverse transcriptase inhibition, with an EC50 of 7 μg·mL−1. The major components were identified as sucrose, citric acid, ellagic acid, catechin 3-hexoside, epicatechin 3-hexoside, procyanidin B, hesperetin O-rutinoside, pellitorine, mangiferin, isomangiferin, 4-O-coumaroulquinic acid, ellagic acid, ellagic acid O-pentoside, crotepoxide, oleuropein, magnoflorine, tremulacin and an isomer of dammarane tetrol. Ellagic acid and procyanidin B inhibited the HIV-1 reverse transcription process at 15 and 3.2 µg/mL−1, respectively. Docking studies did not agree with in vitro results because the best scoring ligand was crotepoxide (ΔG = −8.55 kcal/mol), followed by magnoflorine (ΔG = −8.39 kcal/mol). This study showed that CareVid has contrasting in vitro and in silico activity against HIV-1 reverse transcriptase. However, the strongest in vitro inhibitors were ellagic acid and procyanidin B.


2017 ◽  
Vol 12 (7) ◽  
pp. 1934578X1701200
Author(s):  
Joseph T Ortega ◽  
Omar Estrada ◽  
Maria L Serrano ◽  
Whendy Contreras ◽  
Giovannina Orsini ◽  
...  

Flavonoids are present in practically all plants and many biological activities have been described for them. The flavonoid quercetin is a common molecule for which anti-HIV activity has been demonstrated. Avicularin and guajaverin are derivatives of quercetin with a glycoside substituent in their structure. In this work, a mixture of both derivatives was purified from an extract of Psidium guinense. The mixture exhibited activity against HIV-1 in vitro, with an IC50 of approximately 8.5 μg/mL, which compares favorably with the IC50 of 53 μg/mL of quercetin. The mixture also inhibited HIV-1 reverse transcriptase (RT), with an IC50 of 7.2 μM, compared to 0.6 μM for quercetin. These results are in agreement with the in silico prediction for the interaction of these flavonoids with RT and suggest that the glycosylic moiety could favor the transport of the compound into the cell. However, the glycosidic moiety might be cleaved intracellularly, being the resultant quercetin responsible for the antiviral activity.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xavier Siwe-Noundou ◽  
Thommas M. Musyoka ◽  
Vuyani Moses ◽  
Derek T. Ndinteh ◽  
Dumisani Mnkandhla ◽  
...  
Keyword(s):  
Anti Hiv ◽  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrés Mojoli ◽  
Barbara Simonson Gonçalves ◽  
Jairo R. Temerozo ◽  
Bruno Cister-Alves ◽  
Victor Geddes ◽  
...  

Abstract Neutrophils release extracellular traps (NETs) after interaction with microorganisms and physiological or synthetic products. NETs consist of decondensed chromatin complexed with proteins, some of them with microbicidal properties. Because NETs can modulate the functioning of HIV-1 target cells, we aimed to verify whether they modify HIV-1 replication in macrophages. We found that exposure of HIV-1-infected macrophages to NETs resulted in significant inhibition of viral replication. The NET anti-HIV-1 action was independent of other soluble factors released by the activated neutrophils, but otherwise dependent on the molecular integrity of NETs, since NET-treatment with protease or DNase abolished this effect. NETs induced macrophage production of the anti-HIV-1 β-chemokines Rantes and MIP-1β, and reduced the levels of integrated HIV-1 DNA in the macrophage genome, which may explain the decreased virus production by infected macrophages. Moreover, the residual virions released by NET-treated HIV-1-infected macrophages lost infectivity. In addition, elevated levels of DNA-elastase complexes were detected in the plasma from HIV-1-infected individuals, and neutrophils from these patients released NETs, which also inhibited HIV-1 replication in in vitro infected macrophages. Our results reveal that NETs may function as an innate immunity mechanism able to restrain HIV-1 production in macrophages.


Sign in / Sign up

Export Citation Format

Share Document