scholarly journals Estimation of Degree of Consolidation in Soft Ground Using Field Measurements and Rheology Model

2005 ◽  
Vol 47 (2) ◽  
pp. 87-96
Author(s):  
Dal-Won Lee ◽  
Hyun-Jung Yoon
2020 ◽  
Vol 6 (1) ◽  
pp. 164-173 ◽  
Author(s):  
F. Kassou ◽  
J. Ben Bouziyane ◽  
A. Ghafiri ◽  
A. Sabihi

The overloads of structures or embankments built on clayey soft ground are generally applied gradually, respecting a specific phasing. This phasing on construction allows the undrained shear strength of clay increasing over consolidation in order to avoid the risk of collapse during loading. In this work, the undrained shear strength of clay over the consolidation was estimated following SHANSEP method of which parameters proposed by eight researchers have been employed, as well as the slope stability analysis of embankments on soft soils during staged construction. Assessment of factor of safety for slope stability was conducted basing on the Bishop method. Additionally, the variations of undrained shear strength and factor of safety were presented. In order to validate the methods discussed in this study, slope stability analysis of five embankments constructed on clayey soft soils improved by the vertical drain technique in a high-speed railway construction project in Morocco was performed. For these embankments, field measurements about lateral displacement are presented.  It was found that some of the adopted methods is in a good agreement with field measurements. Hence, generalization of these methods to many soft ground cases can be proposed.


2021 ◽  
Vol 21 (4) ◽  
pp. 151-157
Author(s):  
Jiseong Kim ◽  
Eun-Sang Im ◽  
Gichun Kang

In the west coast and the coast of Busan, at several locations, an overconsolidated layer exists above the soft ground. For soft ground with an upper overconsolidated clay layer, significant errors exist between the design and the actual settlements in the field. For multilayered ground, although Boussinesq's theory is applied, significant errors still exist. In this study, ground settlements in the overconsolidated clay layer were predicted using the Burmister and Hirai method. Based on comparisons with field measurements, it was confirmed that the accuracy could be increased by more than 90%.


1996 ◽  
Vol 33 (5) ◽  
pp. 834-841 ◽  
Author(s):  
Elmer L Matyas ◽  
Leo Rothenburg

In the absence of compressibility data from laboratory tests, the total primary consolidation settlement of a structure founded on clay can be estimated from settlement measurements taken over a period of time. In this note, the hyperbolic and Asaoka methods are applied to a case history where an embankment fill was placed on a clay exhibiting secondary compression. It is shown that significant inaccuracies in time–settlement predictions can result if an appropriate time factor versus degree of consolidation relationship is not taken into account. Key words: primary and secondary compressibility, coefficient of consolidation, field measurements, hyperbolic method, Asaoka method.


1993 ◽  
Vol 30 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Frédéric Pellet ◽  
François Descoeudres ◽  
Peter Egger

The face heading stability of underground constructions remains quite difficult to assess, especially when groundwater is present. To investigate this, an experimental microtunnel was excavated at shallow depth in soft ground, below the water table. In agreement with field measurements of the piezometric level changes, a three-dimensional finite element analysis of groundwater flow shows that the head losses are concentrated in the close vicinity of the tunnel face. Both numerical equilibrium analysis and field measurements were used to show that the resulting seepage forces substantially increase the supporting pressure required to ensure face stability. Key words : microtunnel, shallow depth, soft ground, seepage forces, face stability, supporting pressure.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lijun Chen ◽  
Jianxun Chen ◽  
Yanbin Luo ◽  
Yao Li ◽  
Taotao Hu

In soft ground tunnels, feet-lock pipes have been widely used to decrease the concentration of load and settlement at the foot of steel ribs. This paper presents an analytical method to predict the vertical load and settlement at the foot of steel ribs with the support of the feet-lock pipe. First, the mechanical model of a steel rib and feet-lock pipe combined structure involving the ground reaction at the foot was proposed. In this model, the deformation compatibility among the steel rib, the feet-lock pipe, and the ground at the tunnel foot were considered, and an elastic foundation beam model with double parameter for the feet-lock pipe was proposed. Then, based on the proposed mechanical model, the analytical equations for predicting the vertical load and settlement at the foot of the steel rib were derived using structural analysis and beam theory on elastic foundation. The predicted vertical loads and settlements were validated by comparing with the results of field measurements and the Winkler foundation beam model for the feet-lock pipe, and the results show that the feet-lock pipe can effectively reduce the load acting on the ground, where the steel rib was installed, and finally improve the stability of the tunnel structure.


Sign in / Sign up

Export Citation Format

Share Document