scholarly journals Characterization of Partial Coding Region Fibroin Gene on Wild Silkmoth Cricula trifenestrata Helfer (Lepidoptera: Saturniidae)

2011 ◽  
Vol 34 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Suriana Suriana ◽  
D D Solihin ◽  
R R Noor ◽  
A M Thohari
Keyword(s):  
1992 ◽  
Vol 67 (01) ◽  
pp. 063-065 ◽  
Author(s):  
Sherryl A M Taylor ◽  
Jacalyn Duffin ◽  
Cherie Cameron ◽  
Jerome Teitel ◽  
Bernadette Garvey ◽  
...  

SummaryChristmas disease was first reported as a distinct clinical entity in two manuscripts published in 1952 (1, 2). The eponym associated with this disorder, is the surname of the first patient examined in detail and reported by Biggs and colleagues in a paper describing the clinical and laboratory features of seven affected individuals (3). This patient has severe factor IX coagulant deficiency (less than 0.01 units/ml) and no detectable circulating factor IX antigen (less than 0.01 units/ml). Coding sequence and splice junctions of the factor IX gene from this patient have been amplified in vitro through the polymerase chain reaction (PCR). One nucleotide substitution was identified at nucleotide 30,070 where a guanine was replaced by a cytosine. This mutation alters the amino acid encoded at position 206 in the factor IX protein from cysteine to serine. The non conservative nature of this substitution, the absence of this change in more than 200 previously sequenced factor IX genes and the fact that the remainder of the coding region of this gene was normal, all provide strong circumstantial evidence in favour of this change being the causative mutation in this patient. The molecular characterization of this novel mutation in the index case of Christmas disease, contributes to the rapidly expanding body of knowledge pertaining to Christmas disease pathogenesis.


2021 ◽  
pp. 1-7
Author(s):  
Jian Gao ◽  
Sheng Lin ◽  
Shiguo Chen ◽  
Qunyan Wu ◽  
Kaifeng Zheng ◽  
...  

<b><i>Background:</i></b> Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. This study aimed to characterize the G6PD gene variant distribution in Shenzhen of Guangdong province. <b><i>Methods:</i></b> A total of 33,562 individuals were selected at the hospital for retrospective analysis, of which 1,213 cases with enzymatic activity-confirmed G6PD deficiency were screened for G6PD gene variants. Amplification refractory mutation system PCR was first used to screen the 6 dominant mutants in the Chinese population (c.1376G&#x3e;T, c.1388G&#x3e;A, c.95A&#x3e;G, c.1024C&#x3e;T, c.392G&#x3e;T, and c.871G&#x3e;A). If the 6 hotspot variants were not found, next-generation sequencing was then performed. Finally, Sanger sequencing was used to verify all the mutations. <b><i>Results:</i></b> The incidence of G6PD deficiency in this study was 3.54%. A total of 26 kinds of mutants were found in the coding region, except for c.-8-624T&#x3e;C, which was in the noncoding region. c.1376G&#x3e;T and c.1388G&#x3e;A, both located in exon 12, were the top 2 mutants, accounting for 68.43% of all individuals. The 6 hotspot mutations had a cumulative proportion of 94.02%. <b><i>Conclusions:</i></b> This study provided detailed characteristics of G6PD gene variants in Shenzhen, and the results would be valuable to enrich the knowledge of G6PD deficiency.


2001 ◽  
Vol 5 (3) ◽  
pp. 137-145 ◽  
Author(s):  
CLAUDIA R. VIANNA ◽  
THILO HAGEN ◽  
CHEN-YU ZHANG ◽  
ERIC BACHMAN ◽  
OLIVIER BOSS ◽  
...  

The cDNA of an uncoupling protein (UCP) homolog has been cloned from the swallow-tailed hummingbird, Eupetomena macroura. The hummingbird uncoupling protein (HmUCP) cDNA was amplified from pectoral muscle (flight muscle) using RT-PCR and primers for conserved domains of various known UCP homologs. The rapid amplification of cDNA ends (RACE) method was used to complete the cloning of the 5′ and 3′ ends of the open reading frame. The HmUCP coding region contains 915 nucleotides, and the deduced protein sequence consists of 304 amino acids, being ∼72, 70, and 55% identical to human UCP3, UCP2, and UCP1, respectively. The uncoupling activity of this novel protein was characterized in yeast. In this expression system, the 12CA5-tagged HmUCP fusion protein was detected by Western blot in the enriched mitochondrial fraction. Similarly to rat UCP1, HmUCP decreased the mitochondrial membrane potential as measured in whole yeast by uptake of the fluorescent potential-sensitive dye 3′,3-dihexyloxacarbocyanine iodide. The HmUCP mRNA is primarily expressed in skeletal muscle, but high levels can also be detected in heart and liver, as assessed by Northern blot analysis. Lowering the room’s temperature to 12–14°C triggered the cycle torpor/rewarming, typical of hummingbirds. Both in the pectoral muscle and heart, HmUCP mRNA levels were 1.5- to 3.4-fold higher during torpor. In conclusion, this is the first report of an UCP homolog in birds. The data indicate that HmUCP has the potential to function as an UCP and could play a thermogenic role during rewarming.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuan Dai ◽  
Weijia Luo ◽  
Xiaojing Yue ◽  
Wencai Ma ◽  
Jing Wang ◽  
...  

Abstract The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases.


1992 ◽  
Vol 284 (3) ◽  
pp. 749-754 ◽  
Author(s):  
G McAllister ◽  
P Whiting ◽  
E A Hammond ◽  
M R Knowles ◽  
J R Atack ◽  
...  

Inositol monophosphatase (EC 3.1.3.25) is a key enzyme in the phosphoinositide cell-signalling system. Its role is to provide inositol required for the resynthesis of phosphatidylinositol and polyphosphoinositides. It is the probable pharmacological target for lithium action in brain. Using probes derived from the bovine inositol monophosphatase cDNA we have isolated cDNA clones encoding the human and rat brain enzymes. The enzyme is highly conserved in all three species (79% identical). The coding region of the human cDNA was inserted into a bacterial expression vector. The expressed recombinant enzyme was purified and its biochemical properties examined. The human enzyme is very similar to the bovine enzyme.


1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932 ◽  
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 1027-1034 ◽  
Author(s):  
Juergen Bux ◽  
Ernst-Ludwig Stein ◽  
Philippe Bierling ◽  
Patricia Fromont ◽  
Mary Clay ◽  
...  

Abstract Polymorphic structures of the neutrophil Fcγreceptor IIIb (FcγRIIIb) result in alloantibody formation that causes alloimmune neonatal neutropenia and transfusion reactions. Alloantigens located on FcγRIIIb include the antigens NA1 and NA2. In four cases of alloimmune neonatal neutropenia, granulocyte-specific alloantibodies directed against a thus far unknown antigen were detected by granulocyte agglutination and immunofluorescence tests in the maternal sera. By the use of the monoclonal antibody–specific immobilization of granulocyte antigens (MAIGA) assay, the new antigen, termed SH, was located on the FcγRIIIb. Nucleotide sequence analysis of the FcγRIIIb coding region from a SH(+) individual showed a single-base C→A mutation at position 266, which results in an Ala78Asp amino acid substitution. A family study confirmed that this nucleotide difference is inherited, and corresponds to the SH phenotype. Serologic typing of 309 randomly selected individuals showed an antigen frequency of 5% in the white population. The same frequency was found by genotyping, for which a technique based on polymerase chain reaction (PCR) using sequence-specific primers (PCR-SSP) was developed. Typing of all SH(+) individuals for NA1 and NA2, and PCR-restriction fragment length polymorphism analysis of the NA-specific PCR products from five SH(+) individuals using the SH-specific endonuclease SfaN I showed that SH antigen is very probably the result of an additional mutational event in the NA2 form of the FcγRIIIB gene. Immunochemical studies also demonstrated that the SH determinants reside on the 65- to 80-kD NA2 isoform of the FcγRIIIb. Our findings show the existence of an additional polymorphism of the FcγRIIIb, which can result in alloantibody formation causing alloimmune neonatal neutropenia.


2018 ◽  
Vol 53 (1) ◽  
pp. 125-129
Author(s):  
Mônika Fecury Moura ◽  
Norberto da Silva ◽  
Maria Isabel Motta Hoffmann ◽  
Marcelo Agenor Pavan ◽  
Renate Krause-Sakate

Abstract: The objective of this work was to evaluate lettuce genotypes for their reaction to Lettuce mosaic virus (LMV; Most-type, isolate AF-199) and variations of the eukaryotic translation initiation factor eIF4E. All inoculated genotypes were susceptible to LMV, which was detected by RT-PCR using specific primer pairs. However, the accessions 169501, 169501C, 172918A, and 162499 showed late development of symptoms that appeared only on the inoculated leaves. Sequencing of the coding region of eIF4E showed that these genotypes have an eIF4E0 (mol 0 ) standard typical for their susceptibility to LMV, indicating that the phenotype found is not correlated to nucleotide variations in this translation factor.


Sign in / Sign up

Export Citation Format

Share Document