scholarly journals A Multi-Objective Decision-Making Framework for Transportation Investments

Author(s):  
Mashrur Chowdhury ◽  
Pulin Tan

This paper presents a framework based on multi-objective optimization that can be used to generate and analyze the most desirable transportation investment options based on their objectives and constraints. The framework, which is based on the surrogate worth trade-off analysis, could be applied to both discrete or continuous decision-problem scenarios. In a discrete problem, a pre-defined set of alternatives is available, whereas continuous problems are not characterized by a pre-defined set of alternatives. This framework was applied with the data generated for a Capital Beltway Corridor investment study. The multi-objective decision-making framework was found to be adaptable to this typical investment case study.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Florian Diehlmann ◽  
Patrick Siegfried Hiemsch ◽  
Marcus Wiens ◽  
Markus Lüttenberg ◽  
Frank Schultmann

Purpose In this contribution, the purpose of this study is to extend the established social cost concept of humanitarian logistics into a preference-based bi-objective approach. The novel concept offers an efficient, robust and transparent way to consider the decision-maker’s preference. In principle, the proposed method applies to any multi-objective decision and is especially suitable for decisions with conflicting objectives and asymmetric impact. Design/methodology/approach The authors bypass the shortcomings of the traditional approach by introducing a normalized weighted sum approach. Within this approach, logistics and deprivation costs are normalized with the help of Nadir and Utopia points. The weighting factor represents the preference of a decision-maker toward emphasizing the reduction of one cost component. The authors apply the approach to a case study for hypothetical water contamination in the city of Berlin, in which authorities select distribution center (DiC) locations to supply water to beneficiaries. Findings The results of the case study highlight that the decisions generated by the approach are more consistent with the decision-makers preferences while enabling higher efficiency gains. Furthermore, it is possible to identify robust solutions, i.e. DiCs opened in each scenario. These locations can be the focal point of interest during disaster preparedness. Moreover, the introduced approach increases the transparency of the decision by highlighting the cost-deprivation trade-off, together with the Pareto-front. Practical implications For practical users, such as disaster control and civil protection authorities, this approach provides a transparent focus on the trade-off of their decision objectives. The case study highlights that it proves to be a powerful concept for multi-objective decisions in the domain of humanitarian logistics and for collaborative decision-making. Originality/value To the best of the knowledge, the present study is the first to include preferences in the cost-deprivation trade-off. Moreover, it highlights the promising option to use a weighted-sum approach to understand the decisions affected by this trade-off better and thereby, increase the transparency and quality of decision-making in disasters.


2020 ◽  
Vol 6 (3) ◽  
pp. 702-714
Author(s):  
William J. Raseman ◽  
Joseph R. Kasprzyk ◽  
R. Scott Summers ◽  
Amanda K. Hohner ◽  
Fernando L. Rosario-Ortiz

This paper introduces a novel decision-making framework for the optimization of water treatment plant operations.


2019 ◽  
Vol 5 (11) ◽  
pp. 2461-2471
Author(s):  
Hanaa H. Lateef ◽  
Abbas Mohammed Burhan

The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with the help of (Mat lab software), as a tool for decision making problem about choosing the best alternative of the traded piles, and proposes a multi objective optimization model, which aims to optimize the time, cost and quality of the pile types, and assist in selecting the most appropriate pile types. The researcher selected 10 of senior engineers to conduct interviews with them.  And prepared some questions for interviews and open questionnaire. The individuals are selected from private and state sectors each one have 10 years or more experience in pile foundations work. From personal interviews and field survey the research has shown that most of the experts, engineers are not fully aware of new soft wear techniques to helps them in choosing alternatives, despite their belief in the usefulness of using modern technology and software. The Problem is multi objective optimization problem, so after running the PSO algorithm it is usual to have more than one optimal solution, for five proposed pile types, finally the researcher  evaluated and  discussed the output results and  found out that pre-high tension spun (PHC)pile type was the optimal pile type.


2014 ◽  
Vol 29 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Andrzej Majka

Fleet planning is very important elements in the airlines planning process. Fleet planning should answer the question which types of aircraft are required and how many of them are required taking into account the current and future transportation needs. Decision-making in the field of operations has a character of engineering. This process requires consideration of many factors, dependencies and criteria. The article presents the decision problem formulated in the form of a multi-objective mathematical model. This work preliminarily determines the structure of the transportation system which performs carriages on the local routes.


Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


Sign in / Sign up

Export Citation Format

Share Document