scholarly journals A Simplified Procedure for Base Sliding Evaluation of Concrete Gravity Dams under Seismic Action

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
M. Basili ◽  
C. Nuti

Possible base sliding induced by an earthquake on concrete gravity dams is obtained by a simplified procedure. The model is a nonlinear single-degree-of-freedom system which takes into account dam-water-foundation interaction based on the model developed by Fenves and Chopra (1987). The nonlinearity is in the foundation rock, since a threshold value for the sliding foundation resistance, modeled with the Mohr-Coulomb yielding criterion including a frictional and a cohesive component, is imposed. Nonlinear step by dams is obtained by a simplified procedure. The model is a nonlinear single-degree-of-freedom system which takes into account dam-water-foundation interaction based on the model developed by Fenves and Chopra (1987). The nonlinearity is in the foundation rock, since a threshold value for the sliding foundation resistance, modeled with the Mohr-Coulomb yielding criterion including a frictional and a cohesive component, is imposed. Nonlinear step by step dynamic analyses are carried out on four case studies representing typical examples of Italian concrete gravity dams by utilizing several natural earthquakes. On the basis of the obtained results, a simplified methodology to estimate residual displacement without performing nonlinear dynamic analysis is presented. An example of application using as seismic input the elastic response spectra furnished by the Italian Code is also presented.

Author(s):  
Kaiye Hu ◽  
Yong Ding ◽  
Hongwei Wang ◽  
Jide Li

Basing on the nonlinear dynamics theory, the global stability of ship in stochastic beam sea is researched by the global bifurcation method. In this paper, bounded noise is first briefly introduced. Bounded noise is a harmonic function with constant random frequency and phase. It has finite power and its spectral shape can be made to fit a target spectrum, such as Pierson-Moskowitz spectrum, by adjusting its parameters. This paper considered the stochastic excitation term as bounded noise and the influence of nonlinear damping and nonlinear righting moment, setup the random single degree of freedom nonlinear rolling equation. Then the random Melnikov process for the nonlinear system with homoclinic orbits under both dissipative and bounded noise perturbations is derived. The random Melnikov mean-square criterion is used to analysis the global stability of this system. The research indicates that the bounded noise can approximately simulate the wave excitation and if the noise exceeds the threshold value, the ship will undergo stochastic chaotic motion. That will lead ships to instability and even to capsizing.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

2014 ◽  
Vol 567 ◽  
pp. 499-504 ◽  
Author(s):  
Zubair Imam Syed ◽  
Mohd Shahir Liew ◽  
Muhammad Hasibul Hasan ◽  
Srikanth Venkatesan

Pressure-impulse (P-I) diagrams, which relates damage with both impulse and pressure, are widely used in the design and damage assessment of structural elements under blast loading. Among many methods of deriving P-I diagrams, single degree of freedom (SDOF) models are widely used to develop P-I diagrams for damage assessment of structural members exposed to blast loading. The popularity of the SDOF method in structural response calculation in its simplicity and cost-effective approach that requires limited input data and less computational effort. The SDOF model gives reasonably good results if the response mode shape is representative of the real behaviour. Pressure-impulse diagrams based on SDOF models are derived based on idealised structural resistance functions and the effect of few of the parameters related to structural response and blast loading are ignored. Effects of idealisation of resistance function, inclusion of damping and load rise time on P-I diagrams constructed from SDOF models have been investigated in this study. In idealisation of load, the negative phase of the blast pressure pulse is ignored in SDOF analysis. The effect of this simplification has also been explored. Matrix Laboratory (MATLAB) codes were developed for response calculation of the SDOF system and for repeated analyses of the SDOF models to construct the P-I diagrams. Resistance functions were found to have significant effect on the P-I diagrams were observed. Inclusion of negative phase was found to have notable impact of the shape of P-I diagrams in the dynamic zone.


Sign in / Sign up

Export Citation Format

Share Document