scholarly journals Mapping and Inventory of Forest Fires in Andhra Pradesh, India: Current Status and Conservation Needs

ISRN Forestry ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
C. Sudhakar Reddy ◽  
P. Hari Krishna ◽  
K. Anitha ◽  
Shijo Joseph

Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest management. The present study appraises the distribution of forest fires in one of the largest states in India, Andhra Pradesh, using satellite remote sensing. Advanced Wide Field Sensor (AWiFS) onboard on Indian Remote Sensing Satellite (IRS P6) was used for mapping and analyzing the spatial extent of burnt areas. Comparative analysis was carried out with respect to different forest types, protected areas and across elevation zones to demarcate and identify the fire-affected areas. The results show that about 19% (8594 km2) of forest area were burnt in the state during 2009. Burnt area statistics for Protected Areas reveal that 24% of forest cover was affected by fire. Nagarjunasagar Srisailam Tiger Reserve, the largest tiger reserve of the country, shows an area of 793 km2 (22%) under forest fire. Higher elevation areas which are predominantly dominated by savannah and woodlands experienced higher fire occurrence in comparison with lower elevation areas. Similarly, fires were prevalent near edges compared to core forest. Results of the study suggested that forests of Andhra Pradesh are prone to high fire occurrences and current fire regime poses a severe conservation threat to biodiversity both within and outside the Protected Areas.


Author(s):  
R. M. Devi ◽  
B. Sinha ◽  
J. Bisaria ◽  
S. Saran

<p><strong>Abstract.</strong> Forest ecosystems play a key role in global ecological balance and provide a variety of tangible and intangible ecosystem services that support the livelihoods of rural poor. In addition to the anthropogenic pressure on the forest resources, climate change is also impacting vegetation productivity, biomass and phenological patterns of the forest. There are many studies reported all over the world which use change in Land Use Land Cover (LULC) to assess the impact of climate change on the forest. Land use change (LC) refers to any anthropogenic or natural changes in the terrestrial ecosystem at a variety of spatial or temporal scale. Changes in LULC induced by any causes (natural/anthropogenic) play a major role in global as well as regional scale pattern which in turn affects weather and climate. Remote sensing (RS) data along with Geographic Information System (GIS) help in inventorying, mapping and monitoring of earth resources for effective and sustainable landscape management of forest areas. Accurate information about the current and past LULC including natural forest cover along with accurate means of monitoring the changes are very necessary to design future adaptation strategies and formulation of policies in tune of climate change. Therefore, this study attempts to analyze the changes of LULC of Kanha Tiger Reserve (KTR) due to climate change. The rationale for selecting KTR is to have a largely intact forest area without any interference so that any change in LULC could be attributed to the impact of climate change. The change analysis depicted changes in land use land cover (LULC) pattern by using multi-temporal satellite data over a period of time. Further, these detected changes in different LULC class influence the livelihoods of forest-dependent communities. As the study site is a Sal dominated landscape; the findings could be applied in other Sal dominated landscape of central India in making future policies, adaptation strategies and silvicultural practices for reducing the vulnerability of forest-dependent communities.</p>



2004 ◽  
Vol 19 (12) ◽  
pp. 1713-1715
Author(s):  
K. Thulsi Rao ◽  
M. Prudhvi Raju ◽  
S. M. Maqsood Javed ◽  
I. Siva Rama Krishna


2005 ◽  
Vol 20 (6) ◽  
pp. 1905-1907 ◽  
Author(s):  
K. Thulsi Rao ◽  
H.V. Ghate ◽  
M. Sudhakar ◽  
S.M. Maqsood Javed ◽  
I. Siva Rama Krishna


2020 ◽  
Author(s):  
Eufrásio Nhongo ◽  
Denise Fontana ◽  
Laurindo Guasselli

AbstractWildfires are among the biggest factors of ecosystem change. Knowledge of fire regime (fire frequency, severity, intensity, seasonality, and distribution pattern) is an important factor in wildfire management. This paper aims to analyze the spatiotemporal patterns of fires and burned areas in the Niassa Reserve between 2002-2015 using MODIS data, active fire product (MCD14ML) and burned area product (MCD64A1). For this, the annual and monthly frequencies, the trend of fires and the frequency by types of forest cover were statistically analyzed. For the analysis of the spatial dynamics of forest fires we used the Kernel density (Fixed Method). The results show a total of 20.449 forest fires and 171.067 km2 of burned areas in the period 2002-2015. Fire incidents were highest in 2015, while the largest burned areas were recorded in 2007. The relationship between increased fires and burned areas is not linear. There was a tendency for fires to increase, while for burnt areas there was stabilization. Forest fires start in May and end in December. August-October are the most frequent period, peaking in September. Fires occur predominantly in deciduous forests and mountain forests because of the type of vegetation and the amount of dry biomass. There is a monthly spatial dynamics of wildfires from east to west in the reserve. This behavior is dependent on vegetation cover type, fuel availability, and senescence.





2004 ◽  
Vol 19 (11) ◽  
pp. 1692-1693
Author(s):  
K. Thulsi Rao ◽  
H.V. Ghate ◽  
M. Prudhvi Raju ◽  
S.M. Maqsood Javed ◽  
I. Siva Rama Krishna


2004 ◽  
Vol 19 (11) ◽  
pp. 1691-1692
Author(s):  
K. Thulsi Rao ◽  
B.E. Yadav ◽  
M. Prudhvi Raju ◽  
S.M. Maqsood Javed ◽  
I. Siva Rama Krishna


1996 ◽  
pp. 51-54 ◽  
Author(s):  
N. V. M. Unni

The recognition of versatile importance of vegetation for the human life resulted in the emergence of vegetation science and many its applications in the modern world. Hence a vegetation map should be versatile enough to provide the basis for these applications. Thus, a vegetation map should contain not only information on vegetation types and their derivatives but also the geospheric and climatic background. While the geospheric information could be obtained, mapped and generalized directly using satellite remote sensing, a computerized Geographic Information System can integrate it with meaningful vegetation information classes for large areas. Such aft approach was developed with respect to mapping forest vegetation in India at. 1 : 100 000 (1983) and is in progress now (forest cover mapping at 1 : 250 000). Several review works reporting the experimental and operational use of satellite remote sensing data in India were published in the last years (Unni, 1991, 1992, 1994).



2019 ◽  
pp. 91-94
Author(s):  
T. M. Lysenko ◽  
V. Yu. Neshatayeva ◽  
Z. V. Dutova

The International conference “Flora and conservation in the Caucasus: history and current state of knowledge” dedicated to the 130-year anniversary of the Perkalsky Arboretum took place at 22–25 of May 2019 in Pyatigorsk (Stavropol Territory) on the base of the Pyatigorsk Museum of local lore and natural history. The participants were from 11 cities of Russia and 7 Republics of the Caucasus and represented 14 institutions. Proceedings of the conference were published by the beginning of the meeting the book of abstracts includes 49 papers on the study of vascular plants, bryophytes, lichens and fungi, plant communities, as well as the protection of rare and endangered species, unique plant communities, and ecological problems in the Caucasus. The following geobotanical topics were highlighted in 13 papers: forest communities (3 reports), meadow and steppe vegetation (2), xeric open forests (2), communities of ecotone areas (1), structure of populations of rare plant species (3), as well as the history and current status of nature protected areas (2). The great emphasis has been focused on the study of floristic composition and plant populations. Thus, the conference showed that very few studies от vegetation are currently carried out in the Caucasus, and a lot of districts are not affected by the research. The greatest attention is paid to forest vegetation while meadow, steppe, alpine heath and xerophytic communities are studied rather poorly. Besides, there are “white spots” — mire, floodplain and aquatic vegetation. In nowadays, when the anthropogenic impact on the plant cover of the Caucasus is intensively increasing, it is especially important to study natural undisturbed communities preserved in protected natural areas. Another important issue is the conservation of the unique vegetation cover of the whole Caucasus. Thus, the study of vegetation of this region opens a wide field for researchers using various methods of modern plant science.



Sign in / Sign up

Export Citation Format

Share Document