scholarly journals Epithelial Mesenchymal Transition: A New Insight into the Detection of Circulating Tumor Cells

ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Guislaine Barrière ◽  
Michel Tartary ◽  
Michel Rigaud

Many research groups reported on the relation between circulating tumor cells (CTCs) in peripheral blood and worse prognosis for metastatic cancer patients. These results are based on CTCs counting and did not take into account molecular characteristics of cells. To establish CTCs as a reliable and accurate biological marker, new technologies must be focused on CTC subpopulations: dedifferentiated circulating tumor cells (ddCTCs) arising from epithelial mesenchymal transition (EMT). To select and detect them, different methods have been proposed but none has still reached the goal. Technical progress and translational research are expected to establish CTCs as a real marker. Thus CTC evaluation profiling for each patient will lead to personalize followup and therapy.

2020 ◽  
Author(s):  
Jiani Yang ◽  
Jun Ma ◽  
Yue Jin ◽  
Shanshan Cheng ◽  
Shan Huang ◽  
...  

Abstract We aimed to determine prognosis value of circulating tumor cells(CTCs) undergoing epithelial–mesenchymal transition(EMT) in epithelial ovarian cancer(EOC) recurrence. We used CanPatrol CTC-enrichment technique to detect CTCs from blood samples and classify subpopulations into epithelial, mesenchymal and hybrids. To construct nomogram, prognostic factors were selected by Cox regression analysis. Risk stratification was performed through Kaplan–Meier analysis among training group(n=114) and validation group(n=38). By regression screening, both CTC counts(HR 1.187; 95%CI 1.098-1.752; p=0.012) and M-CTC(HR 1.098; 95%CI 1.047-1.320; p=0.009) were demonstrated as independent factors for recurrence. Other variables including pathological grade, FIGO stage, lymph node metastasis, ascites and CA-125 were also collected(p < 0.005) to construct nomogram. The C-index of internal and external validation for nomogram was 0.913 and 0.874. We found significant predictive value for nomogram with/without CTCs (AUC 0.8705 and 0.8097). Taking CTC counts and M-CTC into separation, the values were 0.8075 and 0.8262. Finally, survival curves of risk stratification based on CTC counts(p=0.0241), M-CTC(p=0.0107) and the nomogram(p=0.0021) were drawn with significant difference. In conclusion, CTCs could serve as a novel factor for EOC prognosis. Nomogram model constructed by CTCs and other clinical parameters could predict EOC recurrence and perform risk stratification for clinical decision-making.Trial registration: Chinese Clinical Trial Registry, ChiCTR-DDD-16009601, October 25, 2016


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 483 ◽  
Author(s):  
Chiara Agnoletto ◽  
Fabio Corrà ◽  
Linda Minotti ◽  
Federica Baldassari ◽  
Francesca Crudele ◽  
...  

The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 580-580
Author(s):  
William Strauss ◽  
Paul W. Dempsey ◽  
Jessamine Winer-Jones ◽  
Catherine Bingham ◽  
R. Katherine Alpaugh ◽  
...  

580 Background: The treatment of advanced breast cancer demands systemic therapies that can address disease heterogeneity and the development of treatment resistance without a “real-time” molecular window into disease biology. New technologies have focused on increased capture and molecular analysis of circulating tumor cells (CTCs) including cells undergoing epithelial mesenchymal transition (EMT). We conducted a pilot experiment to test the efficiency of capture and cytokeratin (CK) detection and the presence of single point variants (SNV) to determine the best utility of scoring alternatives for CTC. Methods: EpCAM expressing CTC were recovered from breast cancer patients using CellSearch (Veridex) and LiquidBiopsy (Cynvenio Biosystems). EpCAM recovery and CK scoring were indexed in spiked samples and in 12 inflammatory breast cancer (IBC) patient samples using antibodies against CKs 7, 8 or CKs 1-8, 10, 13-16, 18, 19. Additionally, LiquidBiopsy template was analyzed using an Ampliseq 1.0 panel on the IonTorrent PGM. SNV present in the CTC but not white blood cell (WBC) negative controls were identified and where possible, compared to tissue biopsy SNV analyzed using Foundation One (Foundation Medicine). Results: CTCs were detected using CellSearch 10/12 (83%) (range 0-2502 CTC/7.5ml) and LiquidBiopsy 12/12 (100%) (range 6-2800 CTC/7.5mL). More CK positive events were scored using CKs 1-8, 10, 13-16, 18, 19 than CKs 7, 8 in patient samples. Upon sequencing, shared germline polymorphisms were observed in CTC and WBC. Conversely, 1 or 2 SNV were detected in the Epcam selected population but not WBC controls from 6/12 patients (frequency 1.1%-2.1% with 520-5160x coverage) with SNV observed in TP53, MPL, PIK3ca, MET and IDH1. All but one of the PIK3ca mutations were absent in evaluable tissue biopsy. Conclusions: CTC recovery and scoring are two separate events. Altered CK detection emphasized the need to tailor CTC classification to specific disease settings. Sequence analysis showed one correlated SNV among 6 evaluable comparisons to tissue reflecting variable analysis as well as the biologic disparity of metastatic disease. This pilot demonstrates the feasibility of using CTC for molecular analysis.


2016 ◽  
Vol 76 (14) ◽  
pp. 4270-4282 ◽  
Author(s):  
Morgane Bourcy ◽  
Meggy Suarez-Carmona ◽  
Justine Lambert ◽  
Marie-Emilie Francart ◽  
Hélène Schroeder ◽  
...  

2016 ◽  
Vol 62 (4) ◽  
pp. 571-581 ◽  
Author(s):  
Marta Tellez Gabriel ◽  
Lidia Rodriguez Calleja ◽  
Antoine Chalopin ◽  
Benjamin Ory ◽  
Dominique Heymann

Abstract BACKGROUND Circulating tumor cells (CTCs) are biomarkers for noninvasively measuring the evolution of tumor genotypes during treatment and disease progression. Recent technical progress has made it possible to detect and characterize CTCs at the single-cell level in blood. CONTENT Most current methods are based on epithelial cell adhesion molecule (EpCAM) detection, but numerous studies have demonstrated that EpCAM is not a universal marker for CTC detection because it fails to detect both carcinoma cells that undergo epithelial-mesenchymal transition (EMT) and CTCs of mesenchymal origin. Moreover, EpCAM expression has been found in patients with benign diseases. A large proportion of the current studies and reviews about CTCs describe EpCAM-based methods, but there is evidence that not all tumor cells can be detected using this marker. Here we describe the most recent EpCAM-independent methods for enriching, isolating, and characterizing CTCs on the basis of physical and biological characteristics and point out the main advantages and disadvantages of these methods. SUMMARY CTCs offer an opportunity to obtain key biological information required for the development of personalized medicine. However, there is no universal marker of these cells. To strengthen the clinical utility of CTCs, it is important to improve existing technologies and develop new, non–EpCAM-based systems to enrich and isolate CTCs.


Sign in / Sign up

Export Citation Format

Share Document