scholarly journals On Estimating Fluxes due to Small-Scale Turbulent Convection in a Rotating Star

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
D. O. Gough

The way in which turbulent fluxes are usually represented in computations of large-scale flow in the convection zones of the sun and other stars is briefly described. A model of an ensemble of eddies that is capable of generalization to circumstances more complicated than the usual essentially spherically symmetrical convection zone is outlined. Generalization usually requires the introduction of new postulates, and, in so doing, also lays bare some of the assumptions, often implicit, in the usual mixing-length formalisms.

2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


2021 ◽  
Author(s):  
Léo Rogel ◽  
Didier Ricard ◽  
Eric Bazile ◽  
Irina Sandu

<p>Because of the technical difficulties of achieving measurements at high altitudes, it is not clear how well turbulent phenomena are represented in the upper levels of current Numerical Weather Prediction (NWP) operational models.<br>Indeed, turbulence in strongly stable conditions near the tropopause is known to be particularly difficult to correctly parameterize. The constraining buoyancy forces on the vertical lead to anisotropic turbulence, potentially inhibiting turbulent production in NWP models.<br>Partial information for high altitude turbulence events is nonetheless available in the form of in-situ measurements from aircrafts. However, it only allows for qualitative comparisons with model outputs.<br>This study focuses on a turbulent episode induced by a winter upper-level jet above east Belgium on January 27, 2018, for which in-situ EDR (Eddy Dissipation Rate) reports indicate moderate-or-greater turbulence levels. Numerical simulations are performed with the Météo-France operational model AROME, and with the mesoscale research model MesoNH (Laero/CNRM), at the same horizontal grid resolution (1.3km). These two models also use the eddy-diffusivity turbulence scheme of Cuxart et al (2000), a 1.5 order closure scheme based on a prognostic Turbulent Kinetic Energy (TKE) evolution equation, with a diagnostic computation of the mixing length.<br>TKE budgets, as well as stability indices and gradient-based quantities (Richardson number, vertical wind shear) are computed from the model outputs, and qualitative comparison with in-situ data is presented. Time evolution of the turbulent event over Belgium is well captured by both models, agreeing with EDR data.<br>Several sensitivity tests on the vertical resolution, on the mixing length formulation and on the parameters of the TKE equation are then performed. Most notably, the use of an increased vertical resolution near the tropopause greatly enhances the turbulent fluxes in both operational and research models. Secondly, comparison of various expressions of the mixing length shows that the Bougeault and Lacarrere (1989) formulation produces the higher amount of subgrid TKE and turbulent mixing. A decreased turbulent dissipation parameter also significantly increases the amount of subgrid TKE. On the contrary, the use of a 3D turbulence scheme appears to have very limited impacts on the turbulent flow at this kilometer-scale horizontal resolution.<br>On a second part of this study, results from ongoing Large Eddy Simulations (LES) will be presented. These simulations aim at representing small-scale features of the turbulent flow. They will be used as a reference for the computation of turbulent fluxes at kilometer-scale resolution using a coarse-graining method, allowing for a comparison with the parameterized fluxes from the turbulence scheme. In particular, the dissipation term of the TKE equation will be examined. These results are expected to give insight on the leading turbulent mechanisms for which the current turbulence parameterization can be improved in stable conditions.</p>


2003 ◽  
Vol 474 ◽  
pp. 299-318 ◽  
Author(s):  
JACQUES VANNESTE

The weakly nonlinear dynamics of quasi-geostrophic flows over a one-dimensional, periodic or random, small-scale topography is investigated using an asymptotic approach. Averaged (or homogenized) evolution equations which account for the flow–topography interaction are derived for both homogeneous and continuously stratified quasi-geostrophic fluids. The scaling assumptions are detailed in each case; for stratified fluids, they imply that the direct influence of the topography is confined within a thin bottom boundary layer, so that it is through a new bottom boundary condition that the topography affects the large-scale flow. For both homogeneous and stratified fluids, a single scalar function entirely encapsulates the properties of the topography that are relevant to the large-scale flow: it is the correlation function of the topographic height in the homogeneous case, and a linear transform thereof in the continuously stratified case.Some properties of the averaged equations are discussed. Explicit nonlinear solutions in the form of one-dimensional travelling waves can be found. In the homogeneous case, previously studied by Volosov, they obey a second-order differential equation; in the stratified case on which we focus they obey a nonlinear pseudodifferential equation, which reduces to the Peierls–Nabarro equation for sinusoidal topography. The known solutions to this equation provide examples of nonlinear periodic and solitary waves in continuously stratified fluid over topography.The influence of bottom topography on large-scale baroclinic instability is also examined using the averaged equations: they allow a straightforward extension of Eady's model which demonstrates the stabilizing effect of topography on baroclinic instability.


2018 ◽  
Vol 856 ◽  
Author(s):  
M. Borgnino ◽  
G. Boffetta ◽  
F. De Lillo ◽  
M. Cencini

We study the dynamics and the statistics of dilute suspensions of gyrotactic swimmers, a model for many aquatic motile microorganisms. By means of extensive numerical simulations of the Navier–Stokes equations at different Reynolds numbers, we investigate preferential sampling and small-scale clustering as a function of the swimming (stability and speed) and shape parameters, considering in particular the limits of spherical and rod-like particles. While spherical swimmers preferentially sample local downwelling flow, for elongated swimmers we observe a transition from downwelling to upwelling regions at sufficiently high swimming speed. The spatial distribution of both spherical and elongated swimmers is found to be fractal at small scales in a wide range of swimming parameters. The direct comparison between the different shapes shows that spherical swimmers are more clusterized at small stability and speed numbers, while for large values of the parameters elongated cells concentrate more. The relevance of our results for phytoplankton swimming in the ocean is briefly discussed.


Author(s):  
C. Resagk ◽  
R. du Puits ◽  
E. Lobutova ◽  
A. Maystrenko ◽  
A. Thess

1991 ◽  
Vol 130 ◽  
pp. 57-61
Author(s):  
Josep M. Massaguer

AbstractThermal convection in the Sun and cool stars is often modeled with the assumption of an effective Prandtl number σ ≃ 1. Such a parameterization results in masking of the presence of internal shear layers which, for small σ, might control the large scale dynamics. In this paper we discuss the relevance of such layers in turbulent convection. Implications for heat transport – i.e. for the Nusselt number power law – are also discussed.


2019 ◽  
Vol 876 ◽  
pp. 1108-1128 ◽  
Author(s):  
Till Zürner ◽  
Felix Schindler ◽  
Tobias Vogt ◽  
Sven Eckert ◽  
Jörg Schumacher

Combined measurements of velocity components and temperature in a turbulent Rayleigh–Bénard convection flow at a low Prandtl number of $Pr=0.029$ and Rayleigh numbers of $10^{6}\leqslant Ra\leqslant 6\times 10^{7}$ are conducted in a series of experiments with durations of more than a thousand free-fall time units. Multiple crossing ultrasound beam lines and an array of thermocouples at mid-height allow for a detailed analysis and characterization of the complex three-dimensional dynamics of the single large-scale circulation roll in a cylindrical convection cell of unit aspect ratio which is filled with the liquid metal alloy GaInSn. We measure the internal temporal correlations of the complex large-scale flow and distinguish between short-term oscillations associated with a sloshing motion in the mid-plane as well as varying orientation angles of the velocity close to the top/bottom plates and the slow azimuthal drift of the mean orientation of the roll as a whole that proceeds on a time scale up to a hundred times slower. The coherent large-scale circulation drives a vigorous turbulence in the whole cell that is quantified by direct Reynolds number measurements at different locations in the cell. The velocity increment statistics in the bulk of the cell displays characteristic properties of intermittent small-scale fluid turbulence. We also show that the impact of the symmetry-breaking large-scale flow persists to small-scale velocity fluctuations thus preventing the establishment of fully isotropic turbulence in the cell centre. Reynolds number amplitudes depend sensitively on beam-line position in the cell such that different definitions have to be compared. The global momentum and heat transfer scalings with Rayleigh number are found to agree with those of direct numerical simulations and other laboratory experiments.


1990 ◽  
Vol 142 ◽  
pp. 60-61
Author(s):  
Sydney D'Silva ◽  
Arnab Rai Choudhuri

Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri(1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitudes only if the velocities within the giant cells are unrealistically large or if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.


2013 ◽  
Vol 731 ◽  
Author(s):  
Grégoire Lemoult ◽  
Jean-Luc Aider ◽  
José Eduardo Wesfreid

AbstractUsing a large-time-resolved particle image velocimetry field of view, a developing turbulent spot is followed in space and time in a rectangular channel flow for more than 100 advective time units. We show that the flow can be decomposed into a large-scale motion consisting of an asymmetric quadrupole centred on the spot and a small-scale part consisting of streamwise streaks. From the temporal evolution of the energy of the streamwise and spanwise velocity perturbations, it is suggested that a self-sustaining process can occur in a turbulent spot above a given Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document