ANIMATION OF PLANE ELECTROMAGNETIC WAVES IN VACUUM USING WINPLOT SOFTWARE

2021 ◽  
Vol 1 (1) ◽  
pp. 1-17
Author(s):  
Israel Herôncio Rodrigues de Oliveira Hadad ◽  
Marcelo Castanheira da Silva

In this work, the Winplot software was used to animate plane electromagnetic waves in a vacuum. The target audience was a class of 18 undergraduates in Physics and was applied at the Federal University of Acre, campus Rio Branco, in Brazil. The activity was carried out in a computer lab and conducted through a script with detailed instructions. The results were satisfactory, where participants got more than 60.0% right of four of the six investigative questions. In evaluating the activity, 88.9% considered it a good method to visualize the propagation of electromagnetic waves and 77.0% classified the activity as excellent or good. The application of the activity allowed a dynamic view of the propagation of plane electromagnetic waves in a vacuum, which could contribute to the teaching of such content.

1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1998 ◽  
Vol 1 (1) ◽  
pp. 45-52 ◽  
Author(s):  
M. Defos du Rau ◽  
F. Pessan ◽  
G. Ruffie ◽  
V. Vignéras-Lefebvre ◽  
J. P. Parneix

1984 ◽  
Vol 45 (C5) ◽  
pp. C5-167-C5-178
Author(s):  
A. J. Sievers ◽  
Z. Schlesinger ◽  
Y. J. Chabal

2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Metrologiya ◽  
2020 ◽  
pp. 25-42
Author(s):  
Dmitrii V. Khablov

This paper describes a promising method for non-contact vibration diagnostics based on the use of Doppler microwave sensors. In this case, active irradiation of the object with electromagnetic waves and the allocation of phase changes using two-channel quadrature processing of the received reflected signal are used. The modes of further fine analysis of the resulting signal using spectral or wavelet transformations depending on the nature of the active vibration are considered. The advantages of this non-contact and remote vibration analysis method for the study of complex dynamic objects are described. The convenience of the method for machine learning and use in intelligent systems of non-destructive continuous monitoring of the state of these objects by vibration is noted.


Sign in / Sign up

Export Citation Format

Share Document