scholarly journals Operational Cost Minimization of Grid Connected Microgrid System Using Fire Fly Technique

Author(s):  
Shubhanshee Jain ◽  
◽  
Eknath Borkar

Present time, green energy sources interfacing to the utility grid by utilizing microgrid system is very vital to satisfy the ever increasing energy demand. Optimal operation of the microgrid system improved the generation from the distributed renewable energy sources at the lowest operational cost. Large amount of constraints and variables are associated with the microgrid economic operation problem. Thus, this problem is very complex and required efficient technique for handing the problem adequately. There-fore, this research utilized the efficient fire fly optimization technique for solving the formulated microgrid operation control problem. Fire fly algorithm is based on the behavior and nature of the fire flies. A microgrid system modelling which incorporated various distributed energy sources such as solar photo voltaic, wind turbine, micro turbine, fuel cell, diesel generator, electric vehicle technology, battery energy storage system and demands. Energy storage system is utilized in this research for supporting renewable energy sources’ integration in more reliable and qualitative way. Further, the electric vehicle technology i.e. battery electric vehicle, plug-in hybrid electric vehicle and fuel cell electric vehicle are utilized to support the microgrid and utility grid systems with respect to variable demands. Optimal operational cost minimization problem of the developed microgrid system is solved by fire fly algorithm and compared with the grey wolf optimization and particle swarm optimization techniques. By comparative analysis it is clear that the fire fly algorithm provides the minimum operational cost of microgrid system as compared to the GWO and PSO. MATLAB software is utilized to model the microgrid system and implementation of the optimization techniques.

2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


Sign in / Sign up

Export Citation Format

Share Document