scholarly journals Short communication. Phylogeny and genetic diversity within Iberian populations of Ornithopus L. and Biserrula L. estimated using ITS DNA sequences T

2012 ◽  
Vol 10 (1) ◽  
pp. 149 ◽  
Author(s):  
T. Visnevschi-Necrasov ◽  
D. J. Harris ◽  
M. A. Faria ◽  
G. Pereira ◽  
E. Nunes
2013 ◽  
Vol 85 (4) ◽  
pp. 1439-1447 ◽  
Author(s):  
Jonas Aguiar ◽  
Horacio Schneider ◽  
Fatima Gomes ◽  
Jeferson Carneiro ◽  
Simoni Santos ◽  
...  

The tambaqui, Colossoma macropomum, is the most popular fish species used for aquaculture in Brazil but there is no study comparing genetic variation among native and farmed populations of this species. In the present study, we analyzed DNA sequences of the mitochondrial DNA to evaluate the genetic diversity among two wild populations, a fry-producing breeding stock, and a sample of fish farm stocks, all from the region of Santarém, in the west of the Brazilian state of Pará. Similar levels of genetic diversity were found in all the samples and surprisingly the breeding stock showed expressive representation of the genetic diversity registered on wild populations. These results contrast considerably with those of the previous study of farmed stocks in the states of Amapá, Pará, Piauí, and Rondônia, which recorded only two haplotypes, indicating a long history of endogamy in the breeding stocks used to produce fry. The results of the two studies show two distinct scenarios of tambaqui farming in the Amazon basin, which must be better evaluated in order to guarantee the successful expansion of this activity in the region, and the rest of Brazil, given that the tambaqui and its hybrids are now farmed throughout the country.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
M. DANIE AL MALIK ◽  
NI PUTU DIAN PERTIWI ◽  
ANDRIANUS SEMBIRING ◽  
NI LUH ASTRIA YUSMALINDA ◽  
ENEX YUNIARTI NINGSIH ◽  
...  

Abstract. Al Malik MD, Pertiwi NPD, Sembiring A, Yusmalinda NLA, Ningsing EY, Astarini IA. 2020. Short Communication: Genetic structure of Longtail Tuna Thunnus tonggol (Bleeker, 1851) in Java Sea, Indonesia. Biodiversitas 21: 3637-3643. Thunnus tonggol (Longtail Tuna) is an economically important fish found in Indonesia waters, however, the information regarding this fish is lacking. Known to be a neritic fish and found in shallow water, Java Sea is one of the ideal habitats for T. tonggol species. Due to high fishing rates activities in Java Sea, a better management plan to ensure the conservation and fisheries sustainability around this area is needed, especially to protect T. tonggol population. In order to complete the Indonesian tuna data, we aim to study the diversity and genetic structure of T. tonggol in Java Sea at three different locations; i.e. Semarang, Banjarmasin, and Jakarta. In this study, population genetic methods with the marker of mitochondrial DNA (mtDNA) control region were used in population structure analysis. A total of 115 specimens were collected from the fish market around the area of study locations and amplified using polymerase chain reaction (PCR) and sequenced using Sanger methods. The result showed genetic diversity (Hd) value of 0.99366, and nucleotide diversity (π) value of 0.01906. Both of these values indicated high genetic diversity. Population analyses using Analysis of Molecular Variance (AMOVA) showed nonsignificant differences between the three populations of study (mixing population), with the ΦST value of 0,00375 (p-value > 0.05). Based on this result, the fisheries management for T. tonggol in Java Sea needs to be managed as one single population management.


2020 ◽  
Vol 26 (2) ◽  
pp. 97
Author(s):  
Melta R. Fahmi ◽  
Eni Kusrini ◽  
Erma P. Hayuningtiyas ◽  
Shofihar Sinansari ◽  
Rudhy Gustiano

The wild betta fish is a potential ornamental fish export commodity normally caught by traders or hobbyists in the wild. However, the population of wild betta in nature has declined and become a threat for their sustainability. This research was conducted to analyze the genetic diversity, phylogenetic relationships, and molecular identification through DNA COI gene sequence of Indonesian wild betta fish. A total of 92 wild betta fish specimens were collected in this study. Amplification of COI genes was carried out using Fish F1, Fish R1, Fish F2, and Fish R2 primers. The genetic diversity and phylogenetic relationships were analyzed using MEGA version 5 software program. Species identification of the specimen was conducted using BLAST program with 98-100% similarity value of the DNA sequences to indicate the same species. Phylogenetic tree construction showed seven monophyletic clades and showed that Betta smaragdina was the ancestral species of genus Betta in Indonesian waters. Genetic distance among species ranged from 0.02 to 0.30, whereas intra-species genetic distance ranged from 0 to 6.54.


2003 ◽  
Vol 93 (5) ◽  
pp. 596-603 ◽  
Author(s):  
Jeri D. Barak ◽  
Robert L. Gilbertson

Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X. campestris pv. vitians strains from different geographical locations was examined. All strains were first tested for pathogenicity on lettuce plants, and then genetic diversity was assessed using (i) gas-chromatographic analysis of bacterial fatty acids, (ii) polymerase chain reaction analysis of repetitive DNA sequences (rep-PCR), (iii) DNA sequence analysis of the internal transcribed spacer region 1 (ITS1) of the ribosomal RNA, (iv) restriction fragment length polymorphism (RFLP) analysis of total genomic DNA with a repetitive DNA probe, and (v) detection and partial characterization of plasmid DNA. Fatty acid analysis identified all pathogenic strains as X. campestris, but did not consistently identify all the strains as X. campestris pv. vitians. The rep-PCR fingerprints and ITS1 sequences of all pathogenic X. campestris pv. vitians strains examined were identical, and distinct from those of the other X. campestris pathovars. Thus, these characteristics did not reveal genetic diversity among X. campestris pv. vitians strains, but did allow for differentiation of X. campestris pathovars. Genetic diversity among X. campestris pv. vitians strains was revealed by RFLP analysis with a repetitive DNA probe and by characterization of plasmid DNA. This diversity was greatest among strains from different geographical regions, although diversity among strains from the same location also was detected. The results of this study suggest that these X. campestris pv. vitians strains are not clonal, but comprise a relatively homogeneous group.


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Gabriela Padilla-Jacobo ◽  
Tiberio C. Monterrubio-Rico ◽  
Horacio Cano-Camacho ◽  
María Guadalupe Zavala-Páramo

Abstract Background The Orange-fronted Parakeet (Eupsittula canicularis) is the Mexican psittacine that is most captured for the illegal pet trade. However, as for most wildlife exploited by illegal trade, the genetic diversity that is extracted from species and areas of intensive poaching is unknown. In this study, we analyzed the genetic diversity of 80 E. canicularis parakeets confiscated from the illegal trade and estimated the level of extraction of genetic diversity by poaching using the mitochondrial DNA sequences of cytochrome b (Cytb). In addition, we analyzed the genealogical and haplotypic relationships of the poached parakeets and sampled wild populations in Mexico, as a strategy for identifying the places of origin of poached parakeets. Results Poached parakeets showed high haplotype diversity (Hd = 0.842) and low nucleotide diversity (Pi = 0.00182). Among 22 haplotypes identified, 18 were found exclusively in 37 individuals, while four were detected in the remaining 43 individuals and shared with the wild populations. A rarefaction and extrapolation curve revealed that 240 poached individuals can include up to 47 haplotypes and suggested that the actual haplotype richness of poached parakeets is higher than our analyses indicate. The geographic locations of the four haplotypes shared between poached and wild parakeets ranged from Michoacan to Sinaloa, Mexico. However, the rare haplotypes detected in poached parakeets were derived from a recent genetic expansion of the species that has occurred between the northwest of Michoacan and the coastal region of Colima, Jalisco and southern Nayarit, Mexico. Conclusions Poached parakeets showed high genetic diversity, suggesting high extraction of the genetic pool of the species in central Mexico. Rarefaction and extrapolation analyses suggest that the actual haplotype richness in poached parakeets is higher than reflected by our analyses. The poached parakeets belong mainly to a very diverse genetic group of the species, and their most likely origin is between northern Michoacan and southern Nayarit, Mexico. We found no evidence that poachers included individuals from Central American international trafficking with individuals from Mexico in the sample.


Phytotaxa ◽  
2019 ◽  
Vol 401 (3) ◽  
pp. 190
Author(s):  
ZHENYAN YANG ◽  
CHENGJIN YANG ◽  
YUNHENG JI

Paris variabilis, a new species from the Wumengshan Mountains, southwestern China, is described and illustrated. The new species is placed in Paris section Euthyra. The new taxon was determined to be most morphologically similar to P. vietnamensis but differs in its oblong leaf blades with an acute apex, stamens 2–4 × petal number, greenish yellow filaments and an enlarged, purplish red style base. The phylogenetic placement of this species was assessed based on nuclear ribosomal ITS DNA sequences data. The results of morphological and phylogenetic analyses support the status of the taxon as a new species.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Biswajit Bhowmick ◽  
Jianguo Zhao ◽  
Øivind Øines ◽  
Tianlin Bi ◽  
Chenghong Liao ◽  
...  

Abstract Background The northern fowl mite (NFM), Ornithonyssus sylviarum, is an obligatory hematophagous ectoparasite of birds and one of the most important pests in the poultry industry on several continents. Although NFM poses a serious problem, it remains a neglected pest of poultry in China and other Asian countries. Therefore, a molecular analysis was conducted to provide baseline information on the occurrence, genetic diversity and emergence of NFM in poultry farms from China. Methods This study focused on morphological description and identification of adults based on electron microscopy, molecular sequencing of the mitochondrial cox1 gene and phylogenetic analysis. We have also used the DNA sequences of the cox1 gene to study the genetic diversity, population structure and demographic history. The neutrality tests were used to analyze signatures of historical demographic events. Results The mites collected were identified as the northern fowl mite Ornithonyssus sylviarum based on external morphological characterization using electron microscopy. Molecular analysis using a 756-bp long partial fragment of the cox1 gene revealed 99–100% sequence identity with NFM and phylogenetic inferences showed a bootstrap value of 99% indicating a well-supported monophyletic relationship. Molecular diversity indices showed high levels of haplotype diversity dominated by private haplotypes, but low nucleotide divergence between haplotypes. The Tajima’s D test and Fu’s Fs test showed negative value, indicating deviations from neutrality and both suggested recent population expansion of mite populations supported by a star-like topology of the isolates in the network analysis. Our genetic data are consistent with a single introduction of NFM infestations and the spread of NFM infestation in Hainan poultry farms and a private haplotype dominance, which suggest that infestations are recycled within the farms and transmission routes are limited between farms. Conclusions To our knowledge, this is the first time a molecular report of NFM in chicken from China including other Asian countries using DNA barcoding. The findings have potential implications with respect to understanding the transmission patterns, emergence and populations trends of parasitic infestations of poultry farms that will help for setting the parameters for integrated pest management (IPM) tactics against mite infestations.


Sign in / Sign up

Export Citation Format

Share Document