scholarly journals Genetic diversity of the floury race of maize Avati Morotî from the Guaraní tribe in Paraguay

2016 ◽  
Vol 14 (3) ◽  
pp. e0707 ◽  
Author(s):  
Orlando Noldin ◽  
Pedro Revilla ◽  
Bernardo Ordás

Avati Morotî is a race of floury maize widely used by the Guarani people in South America, whose variability and potential value for breeding has been neglected so far. The objective of this research was to explore the genetic variability within the main Paraguayan race Avati Morotî. We studied the genetic variability available in the 20 accessions of Paraguayan Avati Morotî included in the South American core collection made by CIMMYT. Thirty individuals per accession were genotyped with 30 SSR (simple sequence repeat); we determined genetic diversity and made a cluster analysis in order to define genetic relationships among accessions. Mean of polymorphic loci (0.96), alleles per locus (3.57), alleles per polymorphic locus (3.65), expected (0.48) and observed (0.43) heterozygosity, and coefficient of consanguinity (0.12) revealed that Avati Morotî contains a genetic diversity comparable to the most variable maize races of maize. The cluster analysis classified the 20 populations in eight groups, five of them with a single accession, and a large group representing a central pool of germplasm. These results indicate that there is a large variability available in this race, and encourage the collection of more samples of Avati Morotî, particularly in marginal areas that were scarcely sampled.

2011 ◽  
Vol 30 (4) ◽  
pp. 827-837 ◽  
Author(s):  
Sarah M. Potts ◽  
Yuepeng Han ◽  
M. Awais Khan ◽  
Mosbah M. Kushad ◽  
A. Lane Rayburn ◽  
...  

2021 ◽  
Vol 35 (1) ◽  
Author(s):  
Abbas Jorkesh ◽  
Yousef Hamidoghli ◽  
Jamalali Olfati ◽  
Habibollah Samizadeh ◽  
Davood Bakhshi

The genetic variability of Froriepia subpinata Ledeb. Bail., an endangered Iranian endemic species, has been estimated with a total of 52 accessions using 20 markers including ISSR and IRAP. The results showed the polymorphic band produced by primers was 82.3%. The best mean values of genetic diversity parameters observed in ISSRs markers, being UBC873, UBC811, and UBC873 the best primers tested. The similarity range among accessions was 34.45% to 93.3%. The cluster analysis classified the accessions into five main groups that in totally, accessions with similarity in region generally were clustered in the same group. Overall, present study could provide elementary information for formulation of conservation strategies and invaluable elementary genetic information for next breeding or designing conservation programs.


2012 ◽  
Vol 39 (No. 4) ◽  
pp. 149-157 ◽  
Author(s):  
J. Patzak ◽  
F. Paprštein ◽  
A. Henychová ◽  
J. Sedlák

Genetic diversity and genetic relationships of Czech apple cultivars were evaluated. Trees of 33 Czech apple cultivars and 97 reference foreign cultivars were analysed using the set of 10 SSR (simple sequence repeat) primer pairs. The total of 89 polymorphic alleles were amplified, while the number of alleles per locus ranged from 4 to 14. The SSR dendrogram, based on the Jaccard’s similarity coefficient, divided apple cultivars into three major groups: Cox’s Orange Pippin, McIntosh and Golden Delicious ancestries. The clustering highly depended on pedigree and origin of apple cultivars. Spontaneous mutated cultivars were identical with their progenitors. We proved that microsatellite markers were useful for evaluation of genetic resources, collection management and cultivar identification.  


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 802-810 ◽  
Author(s):  
Muwang Li ◽  
Li Shen ◽  
Anying Xu ◽  
Xuexia Miao ◽  
Chengxiang Hou ◽  
...  

To determine genetic relationships among strains of silkworm, Bombyx mori L., 31 strains with different origins, number of generations per year, number of molts per generation, and morphological characters were studied using simple sequence repeat (SSR) markers. Twenty-six primer pairs flanking microsatellite sequences in the silkworm genome were assayed. All were polymorphic and unambiguously separated silkworm strains from each other. A total of 188 alleles were detected with a mean value of 7.2 alleles/locus (range 2–17). The average heterozygosity value for each SSR locus ranged from 0 to 0.60, and the highest one was 0.96 (Fl0516 in 4013). The mean polymorphism index content (PIC) was 0.66 (range 0.12–0.89). Unweighted pair group method with arithmetic means (UPGMA) cluster analysis of Nei's genetic distance grouped silkworm strains based on their origin. Seven major ecotypic silkworm groups were analyzed. Principal components analysis (PCA) for SSR data support their UPGMA clustering. The results indicated that SSR markers are an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in the silkworm.Key words: silkworm, Bombyx mori L., microsatellites, simple sequence repeat (SSR), genetic diversity.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 174 ◽  
Author(s):  
Khanshour ◽  
Hempsey ◽  
Juras ◽  
Cothran

The Cleveland Bay (CB) is the United Kingdom’s oldest established horse breed. In this study we analyzed the genetic variability in CB horses and investigated its genetic relationships with other horse breeds. We examined the genetic variability among 90 CB horses sampled in the USA compared to a total of 3447 horses from 59 other breeds. Analysis of the genetic diversity and population structure was carried out using 15 microsatellite loci. We found that genetic diversity in CB horses was less than that for the majority of other tested breeds. The genetic similarity measures showed no direct relationship between the CB and Thoroughbred but suggested the Turkman horses (likely in the lineage of ancestors of the Thoroughbred) as a possible ancestor. Our findings reveal the genetic uniqueness of the CB breed and indicate its need to be preserved as a genetic resource.


2009 ◽  
Vol 7 (03) ◽  
pp. 244-251 ◽  
Author(s):  
Didiana Gálvez-López ◽  
Sanjuana Hernández-Delgado ◽  
Maurilio González-Paz ◽  
Enrique Noe Becerra-Leor ◽  
Miguel Salvador-Figueroa ◽  
...  

Genetic diversity and relationships among 112 mango (Mangifera indica) plants native to 16 states of Mexico and four controls [three mango cultivars (Ataulfo, Manila and Tommy Atkins) and one accession ofMangifera odorata] were evaluated based on amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) molecular markers. Mango germplasm shows broad dispersion through Mexico and genetically similar germplasm from different agroecological regions has previously been found by our group. Both AFLP and SSR analyses indicated high genetic similarity among mango populations that were clustered in two major groups: mangos from Gulf of Mexico coastline and mangos from Pacific Ocean coastline and locations far away from the sea. The highest genetic diversity was found within plants from each state, and significant genetic differentiation (FST = 0.1921, AFLPs and 0.1911, SSRs) was also observed among mango populations based on geographical origin and genetic status (cultivars versus landraces). Heterozygosity values ranged from low (0.38) to moderate (0.68), and no heterozygote deficits were found. The highest genetic variability was found in mango populations from Tabasco, Michoacán and Oaxaca. Data suggested that mangoes are subjected to natural or induced pollination, so segregation as well as genetic recombination plays major roles on genetic diversification of Mexican mangos. AFLP analysis was more robust than SSR for determining the genetic relationships among mango landraces from Mexico.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Qian You ◽  
Liping Xu ◽  
Yifeng Zheng ◽  
Youxiong Que

Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use.


2010 ◽  
Vol 90 (4) ◽  
pp. 443-452 ◽  
Author(s):  
T. Karuppanapandian ◽  
H W Wang ◽  
T. Karuppudurai ◽  
J. Rajendhran ◽  
M. Kwon ◽  
...  

The DNA fingerprinting methodologies, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), were used to estimate genetic diversity and relationships among 20 black gram (Vigna mungo L. Hepper) varieties. Thirty selected RAPD primers amplified 255 bands, 168 of which were polymorphic (66.5%). On average, these primers produced 8.5 bands, 5.6 of which were polymorphic. Polymorphic band number varied from 2 (A-05) to 10 (OPA-02), with sizes ranging from 100 to 2550 bp. Twenty-four selected ISSR primers produced 238 amplified products, 184 of which were polymorphic (77.8%). On average, these primers generated 9.8 bands, with 7.7 polymorphic bands ranging in number from 4 (ISSR-13) to 11 (ISSR-03), and size from 100-2650 bp. Genetic relationships were estimated using similarity coefficient (Jaccard’s) values between different accession pairs; these varied from 30.7 to 85.0 for RAPD, and from 37.2 to 88.4 with ISSR. UPGMA analysis indicated that the varieties ranged in similarity from 0.50 to 1.00 (mean of 0.75) for RAPD, and from 0.47 to 1.00 (mean of 0.76) with ISSR. Cluster analysis of RAPD and ISSR results identified three clusters with significant bootstrap values, which revealed greater homology between the varieties. Principal coordinates analysis also supported this conclusion. Among the black gram varieties, WBU-108 and RBU-38 were highly divergent, whereas LBG-648 and LBG-623 were genetically similar. The markers generated by RAPD and ISSR assays can provide practical information for the management of genetic resources and these results will also provide useful information for the molecular classification and breeding of new black gram varieties.Key words: Black gram, cluster analysis, genetic diversity, ISSR, molecular markers, RAPD


Author(s):  
Eli Amanda Delgado-Alvarado, Norma Almaraz-Abarca ◽  
Cirenio Escamirosa- Tinoco ◽  
Jose Natividad Uribe-Soto, Jose Antonio Avila-Reyes ◽  
Rene Torres-Ricario, Ana Isabel Chaidez-Ayala

Physalis ixocarpa is an edible species of Solanaceae. This is one of the few cultivated and economically important species of the genus in Mesoamerica. In Mexico, several varieties and landraces have been developed, which have not been molecularly characterized. In the current study, five RAMS primers were used to characterize and assess the genetic variability of two varieties and three landraces of this species. The capacity of these markers to discriminate between them was also evaluated. With comparative aims, Physalis peruviana, the most economically important species of the genus in South America, was analyzed in the same manner. The results revealed that the varieties and landraces of P. ixocarpa conserve important levels of genetic variability (21.75% > Polymorphism < 42.75%), which were higher than that found for P. peruviana (10.75% Polymorphism). RAMS were useful specific markers, as P. peruviana and P. ixocarpa were clearly distinguished one from each other by both cluster analysis and principal components analysis. Close genetic relationships were found between the landraces San Isidro Chihuiro and Verde Puebla, and between the varieties Diamante and Rendidora. In spite of the genetic closeness, the RAMS amplification profiles had a clear varietal-specific tendency, in such a way that they may represent varietal fingerprints, which can be used as authentication tool for varieties and landraces of P. ixocarpa.


2013 ◽  
Vol 61 (5) ◽  
pp. 357 ◽  
Author(s):  
Anas M. Khanshour ◽  
Rytis Juras ◽  
E. Gus Cothran

The Waler horse breed is an integral part of Australian history. The purposes of this study were to analyse the genetic variability in Waler horses from Australia and to investigate genetic relationships with other horse breeds. We examined the genetic diversity of 70 Waler horses sampled from seven breeding stations in Australia. Also we analysed the relationships of these horses with 11 other horse breeds. Analysis of the genetic structure was carried out using 15 microsatellite loci, genetic distances, AMOVA, factorial correspondence analysis and a Bayesian method. We found that the genetic diversity in the Waler was greater than the domestic horse mean and exceeded that of all endangered horse breeds. Our findings also revealed moderate population subdivision rather than inbreeding. All genetic similarity measures indicated that the Thoroughbred might be a key ancestor to the Waler. This study indicates that there is no immediate concern for loss of variation in Waler horses. Also, there clearly has been a strong input from the Thoroughbred into the Waler horse breed. However, the genetic evidence suggests that this input was not just direct but also came through other types of horses with a Thoroughbred cross background.


Sign in / Sign up

Export Citation Format

Share Document