scholarly journals Gauss-Newton Method for Segmentation assisted Deformable Registration

2014 ◽  
Author(s):  
Miro Jurisic ◽  
Tobias Fechter ◽  
Frida Hauler ◽  
Hugo Furtado ◽  
Ursula Nestle ◽  
...  

In this work, we try to develop a fast converging method for segmentation assisted deformable registration. The segmentation step consists of a piece-wise constant Mumford-Shah energy model while reg- istration is driven by the sum of squared distances of both initial images and segmented mask with a diffusion regularization. In order to solve this energy minimization problem, a second order Gauss-Newton opti- mization method is used. For the numerical experiments we used CT data sets from the EMPIRE10 challenge. In this preliminary study, we show high accuracy of our algorithm.

2007 ◽  
Vol 46 (01) ◽  
pp. 38-42 ◽  
Author(s):  
V. Schulz ◽  
I. Nickel ◽  
A. Nömayr ◽  
A. H. Vija ◽  
C. Hocke ◽  
...  

SummaryThe aim of this study was to determine the clinical relevance of compensating SPECT data for patient specific attenuation by the use of CT data simultaneously acquired with SPECT/CT when analyzing the skeletal uptake of polyphosphonates (DPD). Furthermore, the influence of misregistration between SPECT and CT data on uptake ratios was investigated. Methods: Thirty-six data sets from bone SPECTs performed on a hybrid SPECT/CT system were retrospectively analyzed. Using regions of interest (ROIs), raw counts were determined in the fifth lumbar vertebral body, its facet joints, both anterior iliacal spinae, and of the whole transversal slice. ROI measurements were performed in uncorrected (NAC) and attenuation-corrected (AC) images. Furthermore, the ROI measurements were also performed in AC scans in which SPECT and CT images had been misaligned by 1 cm in one dimension beforehand (ACX, ACY, ACZ). Results: After AC, DPD uptake ratios differed significantly from the NAC values in all regions studied ranging from 32% for the left facet joint to 39% for the vertebral body. AC using misaligned pairs of patient data sets led to a significant change of whole-slice uptake ratios whose differences ranged from 3,5 to 25%. For ACX, the average left-to-right ratio of the facet joints was by 8% and for the superior iliacal spines by 31% lower than the values determined for the matched images (p <0.05). Conclusions: AC significantly affects DPD uptake ratios. Furthermore, misalignment between SPECT and CT may introduce significant errors in quantification, potentially also affecting leftto- right ratios. Therefore, at clinical evaluation of attenuation- corrected scans special attention should be given to possible misalignments between SPECT and CT.


2019 ◽  
Vol 31 (6) ◽  
pp. 844-850 ◽  
Author(s):  
Kevin T. Huang ◽  
Michael A. Silva ◽  
Alfred P. See ◽  
Kyle C. Wu ◽  
Troy Gallerani ◽  
...  

OBJECTIVERecent advances in computer vision have revolutionized many aspects of society but have yet to find significant penetrance in neurosurgery. One proposed use for this technology is to aid in the identification of implanted spinal hardware. In revision operations, knowing the manufacturer and model of previously implanted fusion systems upfront can facilitate a faster and safer procedure, but this information is frequently unavailable or incomplete. The authors present one approach for the automated, high-accuracy classification of anterior cervical hardware fusion systems using computer vision.METHODSPatient records were searched for those who underwent anterior-posterior (AP) cervical radiography following anterior cervical discectomy and fusion (ACDF) at the authors’ institution over a 10-year period (2008–2018). These images were then cropped and windowed to include just the cervical plating system. Images were then labeled with the appropriate manufacturer and system according to the operative record. A computer vision classifier was then constructed using the bag-of-visual-words technique and KAZE feature detection. Accuracy and validity were tested using an 80%/20% training/testing pseudorandom split over 100 iterations.RESULTSA total of 321 total images were isolated containing 9 different ACDF systems from 5 different companies. The correct system was identified as the top choice in 91.5% ± 3.8% of the cases and one of the top 2 or 3 choices in 97.1% ± 2.0% and 98.4 ± 13% of the cases, respectively. Performance persisted despite the inclusion of variable sizes of hardware (i.e., 1-level, 2-level, and 3-level plates). Stratification by the size of hardware did not improve performance.CONCLUSIONSA computer vision algorithm was trained to classify at least 9 different types of anterior cervical fusion systems using relatively sparse data sets and was demonstrated to perform with high accuracy. This represents one of many potential clinical applications of machine learning and computer vision in neurosurgical practice.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


2007 ◽  
Vol 46 (03) ◽  
pp. 324-331 ◽  
Author(s):  
P. Jäger ◽  
S. Vogel ◽  
A. Knepper ◽  
T. Kraus ◽  
T. Aach ◽  
...  

Summary Objectives: Pleural thickenings as biomarker of exposure to asbestos may evolve into malignant pleural mesothelioma. Foritsearly stage, pleurectomy with perioperative treatment can reduce morbidity and mortality. The diagnosis is based on a visual investigation of CT images, which is a time-consuming and subjective procedure. Our aim is to develop an automatic image processing approach to detect and quantitatively assess pleural thickenings. Methods: We first segment the lung areas, and identify the pleural contours. A convexity model is then used together with a Hounsfield unit threshold to detect pleural thickenings. The assessment of the detected pleural thickenings is based on a spline-based model of the healthy pleura. Results: Tests were carried out on 14 data sets from three patients. In all cases, pleural contours were reliably identified, and pleural thickenings detected. PC-based Computation times were 85 min for a data set of 716 slices, 35 min for 401 slices, and 4 min for 75 slices, resulting in an average computation time of about 5.2 s per slice. Visualizations of pleurae and detected thickeningswere provided. Conclusion: Results obtained so far indicate that our approach is able to assist physicians in the tedious task of finding and quantifying pleural thickenings in CT data. In the next step, our system will undergo an evaluation in a clinical test setting using routine CT data to quantifyits performance.


2018 ◽  
Vol 6 (4_suppl2) ◽  
pp. 2325967118S0003
Author(s):  
Cornelia Merz ◽  
Andre Steinert ◽  
Wiliam Kurtz ◽  
Franz Xaver Köck ◽  
Johannes Beckmann

Based on a large quantity of CT data, variations in distal femoral geometry was examined and evaluated for TKA. A retrospective study was performed on 24,042 data sets generated during the process of designing individual knee implants. Following parameters were recorded for the distal femur: Femoral absolute anterior-posterior (AP) and medial-lateral (ML) extent, lateral and medial condyle and trochlea size, distal condylar offset (DCO) between lateral and medial condyle, and the difference between medial and lateral posterior condylar offset (PCO) measured in AP direction. Variable patient geometry was found with analysis of the AP and ML extent. Approximately one-third of the patients would experience size conflicts of +/- 3 mm with standard arthroplasty systems. 62% of the knees had a DCO> 1 mm. 83% of the distal femur had a mediolateral difference in PCO> 2 mm, which corresponds to about 3° external rotation and does not correlate with the femoral size. There is a distinct variability of femoral AP and ML extent as well as offsets / asymmetries. Medial and lateral PCOs are different and do not correlate with femoral size. This first results in mismatches between size of implant and individual knee anatomy and secondly in possible softtissue release and different femoral external rotations to adapt systems with fixed distal geometry to the individual situation.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Gurman Gill ◽  
Reinhard R. Beichel

Dynamic and longitudinal lung CT imaging produce 4D lung image data sets, enabling applications like radiation treatment planning or assessment of response to treatment of lung diseases. In this paper, we present a 4D lung segmentation method that mutually utilizes all individual CT volumes to derive segmentations for each CT data set. Our approach is based on a 3D robust active shape model and extends it to fully utilize 4D lung image data sets. This yields an initial segmentation for the 4D volume, which is then refined by using a 4D optimal surface finding algorithm. The approach was evaluated on a diverse set of 152 CT scans of normal and diseased lungs, consisting of total lung capacity and functional residual capacity scan pairs. In addition, a comparison to a 3D segmentation method and a registration based 4D lung segmentation approach was performed. The proposed 4D method obtained an average Dice coefficient of0.9773±0.0254, which was statistically significantly better (pvalue≪0.001) than the 3D method (0.9659±0.0517). Compared to the registration based 4D method, our method obtained better or similar performance, but was 58.6% faster. Also, the method can be easily expanded to process 4D CT data sets consisting of several volumes.


Sign in / Sign up

Export Citation Format

Share Document