scholarly journals Some aspects of the West African monsoon circulation As deduced from a geostationary satellite

MAUSAM ◽  
2022 ◽  
Vol 44 (4) ◽  
pp. 359-364
Author(s):  
OLUWAGBEMIGA O. JEGEDE

This paper focusses on some aspects or the West African monsoonal circulation observed during the period 15 July-l0 August 1979 of the PGGE, as derived from the satellite cloud windvectors. Temporal averages of the computed winsfields reveal that the flow at the low level is southerly (monsoonal), and Its line of discontinuity with the continental northeasterly was found at approximately 16°-18°N, lying about 300 km south of the accepted mean position. At both the middle and upper tropospheres the flow is easterly with axis about 12o-14,N and, latitude 8 No respectively, such that it is a circulation south of the axis and northwards, it is anticyclonic. The satellite-observed tropospheric circulation IS then discussed in relation to the, weather manifestations over the sub-region typical of the July / August period.   The mass fields obtained from our gridded satellite-winds indicate that inflow into the land area occur mainly at the lowest layer (1000:850 hPa), whereas at the upper, levels (that is, above 850 hPa) it is predominantly an outflow, The tropospheric average gives a net mass for divergence from within the area, The significance of this result in relation to the observed weather phenomenology of a temporary cessation of the monsoon precipitations occurring about the peak of the season IS also discussed.

2008 ◽  
Vol 21 (24) ◽  
pp. 6636-6648 ◽  
Author(s):  
Christopher M. Taylor

Abstract Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been hindered by the lack of observations at an appropriate scale. In this study, passive microwave data at 10.65 GHz from the Tropical Rainfall Measuring Mission satellite are used to identify soil moisture variability during the West African monsoon. A simple model of surface sensible heat flux is developed from these data and is used, alongside atmospheric analyses from the European Centre for Medium-Range Weather Forecasting (ECMWF), to provide a new interpretation of monsoon variability on time scales of the order of 15 days. During active monsoon periods, the data indicate extensive areas of wet soil in the Sahel. The impact of the resulting weak surface heat fluxes is consistent in space and time with low-level variations in atmospheric heating and vorticity, as depicted in the ECMWF analyses. The surface-induced vorticity structure is similar to previously documented intraseasonal variations in the monsoon flow, notably a westward-propagating vortex at low levels. In those earlier studies, the variability in low-level flow was considered to be the critical factor in producing intraseasonal fluctuations in rainfall. The current analysis shows that this vortex can be regarded as an effect of the rainfall (via surface hydrology) as well as a cause.


2005 ◽  
Vol 131 (611) ◽  
pp. 2839-2860 ◽  
Author(s):  
D. J. Parker ◽  
R. R. Burton ◽  
A. Diongue-Niang ◽  
R. J. Ellis ◽  
M. Felton ◽  
...  

2019 ◽  
Author(s):  
Jonathan W. Taylor ◽  
Sophie L. Haslett ◽  
Keith Bower ◽  
Michael Flynn ◽  
Ian Crawford ◽  
...  

Abstract. Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June – July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds. LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00 LST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon.


2019 ◽  
Vol 19 (3) ◽  
pp. 1623-1647 ◽  
Author(s):  
Anke Kniffka ◽  
Peter Knippertz ◽  
Andreas H. Fink

Abstract. Realistically simulating the West African monsoon system still poses a substantial challenge to state-of-the-art weather and climate models. One particular issue is the representation of the extensive and persistent low-level clouds over southern West Africa (SWA) during boreal summer. These clouds are important in regulating the amount of solar radiation reaching the surface, but their role in the local energy balance and the overall monsoon system has never been assessed. Based on sensitivity experiments using the ICON model for July 2006, we show for the first time that rainfall over SWA depends logarithmically on the optical thickness of low clouds, as these control the diurnal evolution of the planetary boundary layer, vertical stability and finally convection. In our experiments, the increased precipitation over SWA has a small direct effect on the downstream Sahel, as higher temperatures due to increased surface radiation are accompanied by decreases in low-level moisture due to changes in advection, leading to almost unchanged equivalent potential temperatures in the Sahel. A systematic comparison of simulations with and without convective parameterization reveals agreement in the direction of the precipitation signal but larger sensitivity for explicit convection. For parameterized convection the main rainband is too far south and the diurnal cycle shows signs of unrealistic vertical mixing, leading to a positive feedback on low clouds. The results demonstrate that relatively minor errors, variations or trends in low-level cloudiness over SWA can have substantial impacts on precipitation. Similarly, they suggest that the dimming likely associated with an increase in anthropogenic emissions in the future would lead to a decrease in summer rainfall in the densely populated Guinea coastal area. Future work should investigate longer-term effects of the misrepresentation of low clouds in climate models, e.g. moderated through effects on rainfall, soil moisture and evaporation.


2014 ◽  
Vol 27 (3) ◽  
pp. 994-1009 ◽  
Author(s):  
Eun-Soon Im ◽  
Marc P. Marcella ◽  
Elfatih A. B. Eltahir

Abstract This study investigates the impact of potential large-scale irrigation on the West African monsoon using the Massachusetts Institute of Technology regional climate model (MRCM). A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and eight sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location and scheduling. It is found that the irrigation effect on soil moisture could force significant changes in spatial distribution and magnitude of rainfall, depending on the latitudinal location of irrigation. In general, the large irrigation-induced surface cooling owing to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low-level anticyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation and the intraseasonal variation of supplied irrigation water. The low-level northeasterly airflow associated with an anticyclonic circulation centered over the irrigation area, induced at optimal location and timing, would enhance the extent of low-level convergence areas through interaction with the prevailing monsoon flow, leading to a significant increase in rainfall. As the location of the irrigation area is moved from the coast northward, the regional rainfall change exhibits a significant decrease first, then increases gradually to a maximum corresponding to irrigation centered around 20°N, before it declines again.


2008 ◽  
Vol 21 (9) ◽  
pp. 1911-1928 ◽  
Author(s):  
Flore Mounier ◽  
Serge Janicot ◽  
George N. Kiladis

Abstract This paper presents an investigation of the mechanisms giving rise to the main intraseasonal mode of convection in the African monsoon during northern summer, here identified as the quasi-biweekly zonal dipole (QBZD). The QBZD is primarily characterized by a quasi-stationary zonal dipole of convection whose dimension is larger than the West African monsoon domain, with its two poles centered along the Guinean coast and between 30° and 60°W in the equatorial Atlantic. The QBZD dynamical processes within the Atlantic–Africa domain are examined in some detail. The QBZD has a dipole pattern associated with a Walker-type circulation in the near-equatorial zonal plane. It is controlled both by equatorial atmospheric dynamics through a Kelvin wave–like disturbance propagating eastward between its two poles and by land surface processes over Africa, inducing combined fluctuations in surface temperatures, surface pressure, and low-level zonal winds off the coast of West Africa. When convection is at a minimum over central and West Africa, a lack of cloud cover results in higher net shortwave flux at the surface, which increases surface temperatures and lowers surface pressures. This creates an east–west pressure gradient at the latitude of both the ITCZ (10°N) and the Saharan heat low (20°N), leading to an increase in eastward moisture advection inland. The arrival from the Atlantic of the positive pressure signal associated with a Kelvin wave pattern amplifies the low-level westerly wind component and the moisture advection inland, leading to an increase in convective activity over central and West Africa. Then the opposite phase of the dipole develops. Propagation of the QBZD convective envelope and of the associated 200 high-level velocity potential anomalies is detected from the eastern Pacific to the Indian Ocean. When the effect of the Kelvin wave propagation is removed by filtering, the stationary character of the QBZD is highlighted. The impact of the QBZD in combination with a Kelvin wave is illustrated by a case study of the monsoon onset in 1984.


2009 ◽  
Vol 22 (10) ◽  
pp. 2591-2604 ◽  
Author(s):  
Samson M. Hagos ◽  
Kerry H. Cook

Abstract A regional ocean–atmosphere coupled model is developed for climate variability and change studies. The model allows dynamic and thermodynamic interactions between the atmospheric boundary layer and an ocean mixed layer with spatially and seasonally varying depth prescribed from observations. The model reproduces the West African monsoon circulation as well as aspects of observed seasonal SST variations in the tropical Atlantic. The model is used to identify various mechanisms that couple the West African monsoon circulation with eastern Atlantic SSTs. By reducing wind speeds and suppressing evaporation, the northward migration of the ITCZ off the west coast of Africa contributes to the modeled spring SST increases. During this period, the westerly monsoon flow is expanded farther westward and moisture transport on to the continent is enhanced. Near the end of the summer, upwelling associated with this enhanced westerly flow as well as the solar cycle lead to the seasonal cooling of the SSTs. Over the Gulf of Guinea, the acceleration of the southerly West African monsoon surface winds contributes to cooling of the Gulf of Guinea between April and July by increasing the entrainment of cool underlying water and enhancing evaporation.


Sign in / Sign up

Export Citation Format

Share Document