scholarly journals The West African Monsoon Dynamics. Part III: The Quasi-Biweekly Zonal Dipole

2008 ◽  
Vol 21 (9) ◽  
pp. 1911-1928 ◽  
Author(s):  
Flore Mounier ◽  
Serge Janicot ◽  
George N. Kiladis

Abstract This paper presents an investigation of the mechanisms giving rise to the main intraseasonal mode of convection in the African monsoon during northern summer, here identified as the quasi-biweekly zonal dipole (QBZD). The QBZD is primarily characterized by a quasi-stationary zonal dipole of convection whose dimension is larger than the West African monsoon domain, with its two poles centered along the Guinean coast and between 30° and 60°W in the equatorial Atlantic. The QBZD dynamical processes within the Atlantic–Africa domain are examined in some detail. The QBZD has a dipole pattern associated with a Walker-type circulation in the near-equatorial zonal plane. It is controlled both by equatorial atmospheric dynamics through a Kelvin wave–like disturbance propagating eastward between its two poles and by land surface processes over Africa, inducing combined fluctuations in surface temperatures, surface pressure, and low-level zonal winds off the coast of West Africa. When convection is at a minimum over central and West Africa, a lack of cloud cover results in higher net shortwave flux at the surface, which increases surface temperatures and lowers surface pressures. This creates an east–west pressure gradient at the latitude of both the ITCZ (10°N) and the Saharan heat low (20°N), leading to an increase in eastward moisture advection inland. The arrival from the Atlantic of the positive pressure signal associated with a Kelvin wave pattern amplifies the low-level westerly wind component and the moisture advection inland, leading to an increase in convective activity over central and West Africa. Then the opposite phase of the dipole develops. Propagation of the QBZD convective envelope and of the associated 200 high-level velocity potential anomalies is detected from the eastern Pacific to the Indian Ocean. When the effect of the Kelvin wave propagation is removed by filtering, the stationary character of the QBZD is highlighted. The impact of the QBZD in combination with a Kelvin wave is illustrated by a case study of the monsoon onset in 1984.

2019 ◽  
Author(s):  
Jonathan W. Taylor ◽  
Sophie L. Haslett ◽  
Keith Bower ◽  
Michael Flynn ◽  
Ian Crawford ◽  
...  

Abstract. Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June – July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds. LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00 LST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon.


2016 ◽  
Vol 144 (4) ◽  
pp. 1571-1589 ◽  
Author(s):  
Rory G. J. Fitzpatrick ◽  
Caroline L. Bain ◽  
Peter Knippertz ◽  
John H. Marsham ◽  
Douglas J. Parker

Abstract Accurate prediction of the commencement of local rainfall over West Africa can provide vital information for local stakeholders and regional planners. However, in comparison with analysis of the regional onset of the West African monsoon, the spatial variability of the local monsoon onset has not been extensively explored. One of the main reasons behind the lack of local onset forecast analysis is the spatial noisiness of local rainfall. A new method that evaluates the spatial scale at which local onsets are coherent across West Africa is presented. This new method can be thought of as analogous to a regional signal against local noise analysis of onset. This method highlights regions where local onsets exhibit a quantifiable degree of spatial consistency (denoted local onset regions or LORs). It is found that local onsets exhibit a useful amount of spatial agreement, with LORs apparent across the entire studied domain; this is in contrast to previously found results. Identifying local onset regions and understanding their variability can provide important insight into the spatial limit of monsoon predictability. While local onset regions can be found over West Africa, their size is much smaller than the scale found for seasonal rainfall homogeneity. A potential use of local onset regions is presented that shows the link between the annual intertropical front progression and local agronomic onset.


2008 ◽  
Vol 21 (24) ◽  
pp. 6636-6648 ◽  
Author(s):  
Christopher M. Taylor

Abstract Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been hindered by the lack of observations at an appropriate scale. In this study, passive microwave data at 10.65 GHz from the Tropical Rainfall Measuring Mission satellite are used to identify soil moisture variability during the West African monsoon. A simple model of surface sensible heat flux is developed from these data and is used, alongside atmospheric analyses from the European Centre for Medium-Range Weather Forecasting (ECMWF), to provide a new interpretation of monsoon variability on time scales of the order of 15 days. During active monsoon periods, the data indicate extensive areas of wet soil in the Sahel. The impact of the resulting weak surface heat fluxes is consistent in space and time with low-level variations in atmospheric heating and vorticity, as depicted in the ECMWF analyses. The surface-induced vorticity structure is similar to previously documented intraseasonal variations in the monsoon flow, notably a westward-propagating vortex at low levels. In those earlier studies, the variability in low-level flow was considered to be the critical factor in producing intraseasonal fluctuations in rainfall. The current analysis shows that this vortex can be regarded as an effect of the rainfall (via surface hydrology) as well as a cause.


2017 ◽  
Vol 30 (15) ◽  
pp. 5815-5833 ◽  
Author(s):  
Ghassan J. Alaka ◽  
Eric D. Maloney

The West African monsoon (WAM) and its landmark features, which include African easterly waves (AEWs) and the African easterly jet (AEJ), exhibit significant intraseasonal variability in boreal summer. However, the degree to which this variability is modulated by external large-scale phenomena, such as the Madden–Julian oscillation (MJO), remains unclear. The Weather Research and Forecasting (WRF) Model is employed to diagnose the importance of the MJO and other external influences for the intraseasonal variability of the WAM and associated AEW energetics by removing 30–90-day signals from initial and lateral boundary conditions in sensitivity tests. The WAM produces similar intraseasonal variability in the absence of external influences, indicating that the MJO is not critical to produce WAM variability. In control and sensitivity experiments, AEW precursor signals are similar near the AEJ entrance in East Africa. For example, an eastward extension of the AEJ increases barotropic and baroclinic energy conversions in East Africa prior to a 30–90-day maximum of perturbation kinetic energy in West Africa. The WAM appears to prefer a faster oscillation when MJO forcing is removed, suggesting that the MJO may serve as a pacemaker for intraseasonal oscillations in the WAM. WRF results show that eastward propagating intraseasonal signals (e.g., Kelvin wave fronts) are responsible for this pacing, while the role of westward propagating intraseasonal signals (e.g., MJO-induced Rossby waves) appears to be limited. Mean state biases across the simulations complicate the interpretation of results.


2010 ◽  
Vol 7 (4) ◽  
pp. 6351-6380 ◽  
Author(s):  
E. L. A. Wolters ◽  
B. J. J. M. van den Hurk ◽  
R. A. Roebeling

Abstract. This paper describes the application of the KNMI cloud physical properties – precipitation properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) information, retrieved from visible, near-infrared and infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat-9 to estimate precipitation occurrence and intensity. It is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence and intensity over West Africa with a sufficient accuracy, using tropical monsoon measurement mission precipitation radar (TRMM-PR) and a small number of rain gauge observations as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring both the seasonal and synoptical evolution of the West African monsoon (WAM). It is shown that the SEVIRI-detected rainfall area agrees well with TRMM-PR, having a correlation coefficient of 0.86, with the areal extent of rainfall by SEVIRI being ~10% larger than TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. The frequency distributions of rain rate reveal that the median rain rates of CPP-PP and TRMM-PR are similar. However, rain rates >7 mm h−1 are retrieved more frequently by SEVIRI than by TRMM-PR, which is partly explained by known biases in TRMM-PR. Finally, it is illustrated that both the seasonal and synoptical time scale of the WAM can be well detected from SEVIRI daytime observations. It was found that the daytime westward MCS travel speed fluctuates between 50 and 60 km h−1. Furthermore, the ratio of MCS precipitation to the total precipitation was estimated to be about 27%. Our results indicate that rainfall retrievals from SEVIRI can be used to monitor the West African monsoon.


2017 ◽  
Vol 30 (19) ◽  
pp. 7621-7642 ◽  
Author(s):  
Marco Gaetani ◽  
Gabriele Messori ◽  
Qiong Zhang ◽  
Cyrille Flamant ◽  
Francesco S. R. Pausata

Abstract Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modeling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy may be largely due to the assumption of both unrealistic land surface cover and atmospheric aerosol concentration. In this study, the MH environment is simulated in numerical experiments by imposing extensive vegetation over the Sahara and the consequent reduction in airborne dust concentration. A dramatic increase in precipitation is simulated across the whole of West Africa, up to the Mediterranean coast. This precipitation response is in better agreement with proxy data, in comparison with the case in which only changes in orbital forcing are considered. Results show a substantial modification of the monsoonal circulation, characterized by an intensification of large-scale deep convection through the entire Sahara, and a weakening and northward shift (~6.5°) of the African easterly jet. The greening of the Sahara also leads to a substantial reduction in the African easterly wave activity and associated precipitation. The reorganization of the regional atmospheric circulation is driven by the vegetation effect on radiative forcing and associated heat fluxes, with the reduction in dust concentration to enhance this response. The results for the WAM in the MH present important implications for understanding future climate scenarios in the region and in teleconnected areas, in the context of projected wetter conditions in West Africa.


MAUSAM ◽  
2022 ◽  
Vol 44 (4) ◽  
pp. 359-364
Author(s):  
OLUWAGBEMIGA O. JEGEDE

This paper focusses on some aspects or the West African monsoonal circulation observed during the period 15 July-l0 August 1979 of the PGGE, as derived from the satellite cloud windvectors. Temporal averages of the computed winsfields reveal that the flow at the low level is southerly (monsoonal), and Its line of discontinuity with the continental northeasterly was found at approximately 16°-18°N, lying about 300 km south of the accepted mean position. At both the middle and upper tropospheres the flow is easterly with axis about 12o-14,N and, latitude 8 No respectively, such that it is a circulation south of the axis and northwards, it is anticyclonic. The satellite-observed tropospheric circulation IS then discussed in relation to the, weather manifestations over the sub-region typical of the July / August period.   The mass fields obtained from our gridded satellite-winds indicate that inflow into the land area occur mainly at the lowest layer (1000:850 hPa), whereas at the upper, levels (that is, above 850 hPa) it is predominantly an outflow, The tropospheric average gives a net mass for divergence from within the area, The significance of this result in relation to the observed weather phenomenology of a temporary cessation of the monsoon precipitations occurring about the peak of the season IS also discussed.


Sign in / Sign up

Export Citation Format

Share Document