scholarly journals Data assimilation by the variational method with results for the Indian region

MAUSAM ◽  
2021 ◽  
Vol 48 (2) ◽  
pp. 213-224
Author(s):  
ERIK ANDERSSON ◽  
GRAEME A. KELLY ◽  
ANDREAS LANZINGER

ABSTRACT. The variational method for data assimilation as implemented in the operational scheme at ECMWF is briefly presented. The performance of the variational scheme (3D-Var) with respect to tropical cyclones and the Asian summer monsoon is investigated and compared to the Optimum Interpolation scheme. It is found that the analysis of near-surface winds has improved significantly particularly in the vicinity of tropical storms and depressions. The better analyses have led to improvements in the short range forecasts (day 1 to day 3) of such systems. The summer monsoon appears slightly stronger in the 3D-Var analyses, giving enhanced forecast precipitation over the Western Ghats and over large parts of northern India. Only in the latter of these two areas does this verify with observations. The forecasts for India of geopotential, wind and temperature have improved significantly at all forecast ranges, as verified against own analyses. These results are based on 28 cases in two separate 2-week periods.  

2015 ◽  
Vol 28 (9) ◽  
pp. 3731-3750 ◽  
Author(s):  
Jennifer M. Walker ◽  
Simona Bordoni ◽  
Tapio Schneider

Abstract This study identifies coherent and robust large-scale atmospheric patterns of interannual variability of the South Asian summer monsoon (SASM) in observational data. A decomposition of the water vapor budget into dynamic and thermodynamic components shows that interannual variability of SASM net precipitation (P − E) is primarily caused by variations in winds rather than in moisture. Linear regression analyses reveal that strong monsoons are distinguished from weak monsoons by a northward expansion of the cross-equatorial monsoonal circulation, with increased precipitation in the ascending branch. Interestingly, and in disagreement with the view of monsoons as large-scale sea-breeze circulations, strong monsoons are associated with a decreased meridional gradient in the near-surface atmospheric temperature in the SASM region. Teleconnections exist from the SASM region to the Southern Hemisphere, whose midlatitude poleward eddy energy flux correlates with monsoon strength. Possible implications of these teleconnection patterns for understanding SASM interannual variability are discussed.


2012 ◽  
Vol 27 (3) ◽  
pp. 629-646 ◽  
Author(s):  
Min Wen ◽  
Song Yang ◽  
Augustin Vintzileos ◽  
Wayne Higgins ◽  
Renhe Zhang

Abstract A series of 60-day hindcasts by the Climate Forecast System (CFS) of the National Centers for Environmental Prediction is analyzed to understand the impacts of atmospheric model resolutions and initial conditions on predictions of the Asian summer monsoon. The experiments, for the time period 2002–06 and with 14 ensemble members, are conducted at resolutions of T62, T126, and T254. They are initialized every 5 days from May to August, using the operational global atmospheric data assimilation system and operational global ocean data assimilation. It is found that, in predicting the magnitude and the timing of monsoon rainfall over lands, high model resolutions overall perform better than lower model resolutions. The increase in prediction skills with model resolution is more apparent over South Asia than over Southeast Asia. The largest improvement is seen over the Tibetan Plateau, at least for precipitation. However, the increase in model resolution does not enhance the skill of the predictions over oceans. Overall, model resolution has larger impacts than do the initial conditions on predicting the development of the Asian summer monsoon in the early season. However, higher model resolutions such as T382 may be needed for the CFS to simulate and predict many features of the monsoon more realistically.


2021 ◽  
Author(s):  
William K.M. Lau ◽  
Kyu-Myong Kim

<p>Using MERRA2 reanalyses, we have examined the long-term (2000-2019) trends and transport of surface pollutants, CO, BC and OC from surface to the upper troposphere and lower stratosphere (UTLS) during the Asian summer monsoon.    We find a strong linear trend indicating an expansion and strengthening of the Asian Monsoon Anticyclone (AMA), in conjunction with increased concentration of CO, BC and OC in the UTLS, including the Aerosol Tropopause Aerosol Layer (ATAL). </p><p>The UTLS trend in CO can be tracked to increased upward transport primarily from surface sources near 25-35<sup>o</sup>N, in association with the expansion/strengthening of the AMA, and a northward displacement of ascending branch of the monsoon meridional circulation.  In contrast, near 25-35<sup>o</sup>N, BC and OC trends show significant reduction from surface to mid-troposphere, coupled a weak increase at UTLS (above 250 -100 hPa).  The reduction in surface and tropospheric BC and OC likely reflects reduced emission due to the clean air acts in East Asia.  Additionally, heavier rainfall associated with the enhanced ascent and wet scavenging may also contribute to the strong reduction in tropospheric BC and OC.  The increase in UTLS OC/BC appears to stem from increased and extended biomass burning near surface sources located in extratropical latitudes (70-130<sup>o</sup> E, 55-70<sup>o</sup> N).  The OC/BC aerosols are transported upward by vertical mixing over the source regions, and enter the tropical UTLS through horizonal diffusive processes.   Additionally, enhanced penetrative convection in the anomalous ascent regions during the peak monsoon season may also play a role in further enhancing the monsoon ascent, lifting ambient hydrophobic OC/BC and water vapor in the mid-to-upper troposphere to higher elevations, resulting in enhanced ice-cloud fraction, increased latent and radiative heating in the UTLS/ATAL region.</p><p> </p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuhei Takaya ◽  
Yu Kosaka ◽  
Masahiro Watanabe ◽  
Shuhei Maeda

AbstractThe interannual variability of the Asian summer monsoon has significant impacts on Asian society. Advances in climate modelling have enabled us to make useful predictions of the seasonal Asian summer monsoon up to approximately half a year ahead, but long-range predictions remain challenging. Here, using a 52-member large ensemble hindcast experiment spanning 1980–2016, we show that a state-of-the-art climate model can predict the Asian summer monsoon and associated summer tropical cyclone activity more than one year ahead. The key to this long-range prediction is successfully simulating El Niño-Southern Oscillation evolution and realistically representing the subsequent atmosphere–ocean response in the Indian Ocean–western North Pacific in the second boreal summer of the prediction. A large ensemble size is also important for achieving a useful prediction skill, with a margin for further improvement by an even larger ensemble.


2021 ◽  
Vol 414 ◽  
pp. 125477
Author(s):  
Xiaohui Wang ◽  
Kai Liu ◽  
Lixin Zhu ◽  
Changjun Li ◽  
Zhangyu Song ◽  
...  

2021 ◽  
Vol 558 ◽  
pp. 116758
Author(s):  
Yanjun Cai ◽  
Xing Cheng ◽  
Le Ma ◽  
Ruixue Mao ◽  
Sebastian F.M. Breitenbach ◽  
...  

2012 ◽  
Vol 25 (20) ◽  
pp. 6975-6988 ◽  
Author(s):  
Jung-Eun Chu ◽  
Saji N. Hameed ◽  
Kyung-Ja Ha

Abstract The hypothesis that regional characteristics of the East Asian summer monsoon (EASM) result from the presence of nonlinear coupled features that modulate the seasonal circulation and rainfall at the intraseasonal time scale is advanced in this study. To examine this hypothesis, the authors undertake the analysis of daily EASM variability using a nonlinear multivariate data classifying algorithm known as self-organizing mapping (SOM). On the basis of various SOM node analyses, four major intraseasonal phases of the EASM are identified. The first node describes a circulation state corresponding to weak tropical and subtropical pressure systems, strong upper-level jets, weakened monsoonal winds, and cyclonic upper-level vorticity. This mode, related to large rainfall anomalies in southeast China and southern Japan, is identified as the mei-yu–baiu phase. The second node represents a distinct circulation state corresponding to a strengthened subtropical high, monsoonal winds, and anticyclonic upper-level vorticity in southeast Korea, which is identified as the changma phase. The third node is related to copious rain over Korea following changma, which we name the postchangma phase. The fourth node is situated diagonally opposite the changma mode. Because Korea experiences a dry spell associated with this SOM node, it is referred to as the dry-spell phase. The authors also demonstrate that a strong modulation of the changma and dry-spell phases on interannual time scales occurs during El Niño and La Niña years. Results imply that the key to predictability of the EASM on interannual time scales may lie with analysis and exploitation of its nonlinear characteristics.


Sign in / Sign up

Export Citation Format

Share Document