scholarly journals Evolutions of sea level high and warm pool in the southeastern Arabian Sea and their association with Asian monsoons : A study on cause-and-effect relationships

MAUSAM ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 87-94
Author(s):  
O. P. SINGH

The present study aims at gaining more insight into the evolution of warm pool and associated sea level dome in the southeastern Arabian Sea before the summer monsoon onset.  The results show that the Sea Surface Temperature (SST) maximum in the warm pool region is found during April close to the southwest coast of India.  The Sea Surface Height (SSH) maximum over the same region is observed during December. The collapse of sea level dome begins well in advance during the pre-monsoon whereas the warm pool collapses after the onset of summer monsoon during June.  Therefore, there is a lag of about three to four months between the collapses of the sea level high and the warm pool.  Most interesting aspect is the dramatic increase of SST from September and SSH from October which is continued throughout the post monsoon season (October - December). Therefore, both the collapse and evolution of warm pool are dramatic events before and after the summer monsoon.                    There are considerable variations in the intensity of warm pool and the height of sea level dome on interannual scale.  The variation during El-Nino Southern Oscillation (ENSO) epoch of 1987-88 has revealed many interesting features.  During El-Nino year 1987 the warm pool intensity reached its peak in June whereas during La Nina year 1988 the warm pool attained its maximum intensity much earlier, i.e., in April. 

2019 ◽  
Author(s):  
Ghouse Basha ◽  
M. Venkat Ratnam ◽  
Pangaluru Kishore ◽  
S. Ravindrababu ◽  
Isabella Velicogna

Abstract. The Asian Summer Monsoon Anticyclone (ASMA) persisting during monsoon season in the upper troposphere and lower stratosphere (UTLS) region play an important role in confining the trace gases and aerosols for a longer period thus affects regional and global climate. Our understanding on these trace gases and aerosols variability in the ASMA is limited. In this study, the effect of the ASMA on the trace gases (Water Vapour (WV), Ozone (O3), Carbon Monoxide (CO)) and aerosols (Attenuated Scattering Ratio (ASR)) obtained from long-term (2006–2016) satellite measurements is investigated. Since the ASMA is present in the UTLS region, its influence on the tropopause characteristics is also explored. Higher tropopause altitude, WV, CO and ASR confining to the ASMA region is observed, whereas tropopause temperatures and O3 are found low. There exists large inter-annual variation in the ASMA and hence its effect on these trace gases and aerosols are also seen clearly. A significant relationship is also observed between the phases of Quasi-Biannual Oscillation (QBO) and El Niño Southern Oscillation (ENSO) on the trace gases and ASR, including the tropopause when measurements in the ASMA region are subject to multivariate regression analysis. Further, the influence of the Indian summer monsoon (ISM) activity on the ASMA trace gases and aerosols is studied with respect to active and break spells of monsoon, strong and weak monsoon years, strong La Niña, El Niño years. Results show a significant increase in WV, CO and decrease in O3 during the active phase of the ISM, strong monsoon years and strong La Niña years in the ASMA. Enhancement in the ASR values during the strong monsoon years and strong La Niña years is observed. Thus, it is prudent to conclude that the dynamics of the ASMA play an important role in the confinement of several trace gases and aerosols and suggested to consider the activity of summer monsoon while dealing with them at sub-seasonal scales.


2005 ◽  
Vol 133 (10) ◽  
pp. 2996-3014 ◽  
Author(s):  
J. Fasullo

Abstract The 2002 Indian summer monsoon season is unique because of its exceptional weakness, its association with a relatively weak El Niño, and its precedence by over a decade in which ENSO events fail to be associated with significant monsoon anomalies. In this study, atmospheric hydrology during the 2002 summer monsoon and its relationship to monsoon seasons accompanying El Niño events since 1948 are assessed using reanalysis and satellite fields. Strong hydrologic deficits are identified for July and September 2002. During July, the impact of the disturbed Hadley and Walker circulations in the African and Indian Ocean region on vertically integrated moisture transport (VIMT) in the Arabian Sea and India is found to be key to the Indian drought. Interhemispheric coherence in satellite-derived surface wind anomalies is also identified. During September, VIMT and surface wind anomalies, both to the east and west of India, contribute to anomalous moisture divergence in India. Bay of Bengal SST and Indian CAPE anomalies are found to act in response to the season’s major break episodes, contrary to other studies that suggest their role as instigators of break periods. The 2002 season is also found to exhibit characteristics that are common to other recent weak monsoons accompanying El Niño, such as strong westerly VIMT anomalies in the western Pacific Ocean and easterly VIMT anomalies in the Arabian Sea. Hydrologic anomalies that distinguish many recent normal monsoon seasons coinciding with El Niño from the El Niño distribution overall are not evident in 2002. In many respects, the 2002 season thus represents a reemergence of the hydrologic anomalies that have accompanied a strong monsoon–ENSO teleconnection over the past 50 yr and may present a challenge for perspectives that suggest a lasting decoupling of the monsoon–ENSO systems.


2021 ◽  
Vol 12 (1) ◽  
pp. 121-132
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño–Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatiotemporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm-pool sea surface temperature (SST) anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


2015 ◽  
Vol 45 (11) ◽  
pp. 2848-2865 ◽  
Author(s):  
Xiaolin Zhang ◽  
Allan J. Clarke

AbstractObservations of TRITON moored array salinity and temperature in the very wet western equatorial Pacific at 137°E, 147°E, and 156°E since the late 1990s reveal the importance of rainfall to the interannual flow and El Niño–Southern Oscillation (ENSO) dynamics. Past work has shown that in this region a fresher surface isohaline layer is embedded in a thicker isothermal layer. Array estimates of dynamic height relative to the 50–70-m isothermal layer depth (ILD) indicate a near-surface salinity-driven contribution to the monthly sea level anomaly that is uncorrelated with, and smaller than, monthly anomalous sea surface height (SSH) estimated from altimeter data. Despite the smaller size of , its meridional gradient dominates the total sea level meridional gradient. Thus, the corresponding shallow equatorially trapped interannual freshwater jet dominates the near-surface zonal interannual flow. This jetlike flow has a meridional scale of only about 2°–3° of latitude, an amplitude of 23 cm s−1, and is associated with the zonal back and forth displacement of the western equatorial warm/fresh pool that is fundamental to El Niño. The jet is not directly forced by the interannual freshwater surface flux but rather by wind stress anomalies that are mostly east of the warm/fresh pool edge during La Niña and mostly west of it during El Niño. A conceptual coupled ocean–atmosphere instability model is proposed to understand these observations. Calculations show that Aquarius satellite sea surface salinity (SSS) data match the TRITON in situ data well and that the satellite SSS can be used to estimate , and hence , geostrophically.


2008 ◽  
Vol 21 (11) ◽  
pp. 2711-2719 ◽  
Author(s):  
Chie Ihara ◽  
Yochanan Kushnir ◽  
Mark A. Cane ◽  
Alexey Kaplan

Abstract The relationship between all-India summer monsoon rainfall (ISMR) and the timing of (El Niño–Southern Oscillation) ENSO-related warming/cooling is investigated, using observational data during the period from 1881 to 1998. The analysis of the evolutions of Indo-Pacific sea surface temperature (SST) anomalies suggests that when ISMR is not below normal despite the co-occurrence of an El Niño event, warming over the eastern equatorial Pacific starts from boreal winter and evolves early so that the western-central Pacific and Indian Ocean are warmer than normal during the summer monsoon season. In contrast, when the more usual El Niño–dry ISMR relationship holds, the eastern equatorial Pacific starts warming rapidly only about a season before the reference summer so that the western-central Pacific and Indian Oceans remain cold during the monsoon season.


2013 ◽  
Vol 26 (13) ◽  
pp. 4710-4724 ◽  
Author(s):  
Michael Mayer ◽  
Kevin E. Trenberth ◽  
Leopold Haimberger ◽  
John T. Fasullo

Abstract The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.


2000 ◽  
Vol 203 (15) ◽  
pp. 2311-2322 ◽  
Author(s):  
B. Culik ◽  
J. Hennicke ◽  
T. Martin

We satellite-tracked five Humboldt penguins during the strong 1997/98 El Nino Southern Oscillation (ENSO) from their breeding island Pan de Azucar (26 degrees 09′S, 70 degrees 40′W) in Northern Chile and related their activities at sea to satellite-derived information on sea surface temperature (SST), sea surface temperature anomaly (SSTA), wind direction and speed, chlorophyll a concentrations and statistical data on fishery landings. We found that Humboldt penguins migrated by up to 895 km as marine productivity decreased. The total daily dive duration was highly correlated with SSTA, ranging from 3.1 to 12.5 h when the water was at its warmest (+4 degrees C). Birds travelled between 2 and 116 km every day, travelling further when SSTA was highest. Diving depths (maximum 54 m), however, were not increased with respect to previous years. Two penguins migrated south and, independently of each other, located an area of high chlorophyll a concentration 150 km off the coast. Humboldt penguins seem to use day length, temperature gradients, wind direction and olfaction to adapt to changing environmental conditions and to find suitable feeding grounds. This makes Humboldt penguins biological in situ detectors of highly productive marine areas, with a potential use in the verification of trends detected by remote sensors on board satellites.


Sign in / Sign up

Export Citation Format

Share Document