scholarly journals Morphological Identification of Mycorrhizal Fungi Isolated from Native Orchid in Indonesia

2021 ◽  
Vol 14 (05) ◽  
pp. 1031-1034
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Benard O. Ogoma ◽  
Stephen F. Omondi ◽  
Jane Ngaira ◽  
Josephine W. Kimani

Carissa edulis is a tropical plant belonging to the family Apocynaceae. The species is widely used in the preparation of various herbal medicines. Earlier works in Kenya show that an aqueous extract from the roots of C. edulis has remarkable anti-herpes simplex virus. Due to its medicinal value, the species has been overexploited in its natural range and requires conservation interventions. Studies show that the species has beneficial relationships with arbuscular mycorrhizal fungi (AMF) that can enhance restoration of its population; however, no study has been undertaken to document the diversity of these AMF species. This study evaluated the genetic diversity of AMF associated with the roots of C. edulis within Lake Victoria basin ecosystem of Kenya. A cross-sectional, laboratory-based prospective study was carried out from roots of C. edulis collected from six sites within the ecosystem. Root samples were collected from 6 points (replicates) per site. AMF was assessed through morphological characterization and sequencing of small subunit of ribosomal DNA. Morphological identification identified four genera of AMF (Gigaspora, Acaulospora, Scutellospora, and Glomus) with no significant difference among the sites. Molecular analysis also revealed presence of four genera, but only two (Glomus and Acaulospora) were common for both the analyses with Glomus as the most predominant genera. In all the sites, there were large numbers of spores both in soil and in the roots confirming the association between C. edulis and AMF.


Author(s):  
W. R. Schucany ◽  
G. H. Kelsoe ◽  
V. F. Allison

Accurate estimation of the size of spheroid organelles from thin sectioned material is often necessary, as uniquely homogenous populations of organelles such as vessicles, granules, or nuclei often are critically important in the morphological identification of similar cell types. However, the difficulty in obtaining accurate diameter measurements of thin sectioned organelles is well known. This difficulty is due to the extreme tenuity of the sectioned material as compared to the size of the intact organelle. In populations where low variance is suspected the traditional method of diameter estimation has been to measure literally hundreds of profiles and to describe the “largest” as representative of the “approximate maximal diameter”.


Author(s):  
Charles D. Humphrey ◽  
E. H. Cook ◽  
Karen A. McCaustland ◽  
Daniel W. Bradley

Enterically transmitted non-A, non-B hepatitis (ET-NANBH) is a type of hepatitis which is increasingly becoming a significant world health concern. As with hepatitis A virus (HAV), spread is by the fecal-oral mode of transmission. Until recently, the etiologic agent had not been isolated and identified. We have succeeded in the isolation and preliminary characterization of this virus and demonstrating that this agent can cause hepatic disease and seroconversion in experimental primates. Our characterization of this virus was facilitated by immune (IEM) and solid phase immune electron microscopic (SPIEM) methodologies.Many immune electron microscopy methodologies have been used for morphological identification and characterization of viruses. We have previously reported a highly effective solid phase immune electron microscopy procedure which facilitated identification of hepatitis A virus (HAV) in crude cell culture extracts. More recently we have reported utilization of the method for identification of an etiologic agent responsible for (ET-NANBH).


1994 ◽  
Vol 92 (2) ◽  
pp. 364-368 ◽  
Author(s):  
Ulrich Galli ◽  
Hannes Schuepp ◽  
Christian Brunold

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Author(s):  
Geslanny Oliveira Sousa ◽  
Valéria Lima Barbosa ◽  
Eleonora Barbosa Santiago da Costa ◽  
Francisco de Assys Romero da Mota Sousa ◽  
Priscila Gonçalves Figueiredo de Sousa

Sign in / Sign up

Export Citation Format

Share Document