Planetary Health and the Naturopathic Profession: Back to the Future

CAND Journal ◽  
2021 ◽  
Vol 28 (4) ◽  
pp. 7-8
Author(s):  
David H. Nelson
Keyword(s):  
Challenges ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 41 ◽  
Author(s):  
Chong Chen ◽  
Shin Nakagawa

All awareness, thoughts, emotions, perceptions, memories, actions—everything that encompasses our human capacity and reality—are mediated through the biological interface of our brains. While the source of consciousness remains a fundamental and elusive question, it is also inescapable that threats to biological health can compromise any and all aspects of psychological and neurological functioning, from the first moments of life. The effects of environmental threats to specific aspects of individual brain health are well recognized, yet precious little attention is given to the collective effects of planetary-scale environmental damage, and the erosion of numerous planetary systems, on the biology of the human brain. Although, these are likely to vary widely with individual circumstances, it is also inevitable that the ‘dysbiotic drift’ (increasing life in distress) at the planetary scale is reflected at the personal scale, with a collective shift towards increased biological stress of all kinds. Here, we make the case that ‘planetary distress’ is directly implicated in a collective increase in ‘personal distress’, and that multifaceted biological pressures, as well as psychological pressures, are implicated in the mental health crisis and predisposition to numerous disorders in brain development, functioning and aging. In turn, this has implications for every aspect of health, capacity, and the very essence of human experience for generations to come. Viewed on this scale, we call for a quantum shift in efforts to address the many factors affecting brain health, ranging from air pollution to disappearing greenspace. These all stem from ecological imbalance and point to a unifying need to restore planetary health. Ultimately, the future of human capacity depends on this.


2022 ◽  
Author(s):  
Sophie Attwood ◽  
Cother Hajat

A shift in how we obtain protein from our diets, away from intensive farming and fishing, towards cleaner sources, be they animal or plant-based, will form an essential part of the solution to achieving the pledges formalised following COP26. This can be achieved through many different approaches including reduction, substitution, reducing the frequency of consumption, blending into hybrid products, and without the necessity of a complete eschewal of animal-based products. The new paradigm of ‘planetary health’, which focuses on the interdependence of human health, animal health and environmental health, will greatly facilitate meeting the ambitious and near-term targets set. This commentary discusses these issues in depth, with a focus on solutions to promote both planetary and human health in unison.


2020 ◽  
pp. 17-35
Author(s):  
James Dunk ◽  
Warwick Anderson
Keyword(s):  

1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document