scholarly journals New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes

Author(s):  
Graeme H. McVerry ◽  
John X. Zhao ◽  
Norman A. Abrahamson ◽  
Paul G. Somerville

Attenuation relations are presented for peak ground accelerations (pga) and 5% damped acceleration response spectra in New Zealand earthquakes. Expressions are given for both the larger and the geometric mean of two randomly-oriented but orthogonal horizontal components of motion. The relations take account of the different tectonic types of earthquakes in New Zealand, i.e., crustal, subduction interface and dipping slab, and of the different source mechanisms for crustal earthquakes. They also model the faster attenuation of high-frequency earthquake ground motions in the volcanic region than elsewhere. Both the crustal and subduction zone attenuation expressions have been obtained by modifying overseas models for each of these tectonic environments to better match New Zealand data, and to cover site classes that relate directly to those used for seismic design in New Zealand codes. The study used all available data from the New Zealand strong-motion earthquake accelerograph network up to the end of 1995 that satisfied various selection criteria, supplemented by selected data from digital seismographs. The seismographs provided additional records from rock sites, and of motions involving propagation paths through the volcanic region, classes of data that are sparse in records produced by the accelerograph network. The New Zealand strong-motion dataset lacks records in the nearsource region, with only one record from a distance of less than 10 km from the source, and at magnitudes greater than Mw 7.23. The New Zealand data used in the regression analyses ranged in source distance from 6 km to 400 km (the selected cutoff) and in moment magnitude from 5.08 to 7.23 for pga, with the maximum magnitude reducing to 7.09 for response spectra data. The required near-source constraint has been obtained by supplementing the New Zealand dataset with overseas peak ground acceleration data (but not response spectra) recorded at distances less than 10 km from the source. Further near-source constraints were obtained from the overseas attenuation models, in terms of relationships that had to be maintained between various coefficients that control the estimated motions at short distances. Other coefficients were fitted from regression analyses to better match the New Zealand data. The need for different treatment of crustal and subduction zone earthquakes is most apparent when the effects or source mechanism are taken into account. For crustal earthquakes, reverse mechanism events produce the strongest motions, followed by strike-slip and normal events. For subduction zone events, the reverse mechanism interface events have the lowest motions, at least in the period range up to about ls, while the slab events, usually with normal mechanisms, are generally strongest. The attenuation relations presented in this paper have been used in many hazard studies in New Zealand over the last five years. In particular, they have been used in the derivation of the elastic site spectra in the new Standard for earthquake loads in New Zealand, NZS 1170.5:2004.

Author(s):  
Chris Van Houtte ◽  
Stephen Bannister ◽  
Caroline Holden ◽  
Sandra Bourguignon ◽  
Graeme McVerry

This article summarises work that has been undertaken to compile the New Zealand Strong Motion Database, which is intended to be a significant resource for both researchers and practitioners. The database contains 276 New Zealand earthquakes that were recorded by strong motion instruments from GeoNet and earlier network operators. The events have moment magnitudes ranging from 3.5 to 7.8. A total of 134 of these events (49%) have been classified as occurring in the overlying crust, with 33 events (12%) located on the Fiordland subduction interface and 7 on the Hikurangi subduction interface (3%). 8 events (3%) are deemed to have occurred within the subducting Australian Plate at the Fiordland subduction zone, and 94 events (34%) within the subducting Pacific Plate on the Hikurangi subduction zone. There are a total of 4,148 uniformly-processed recordings associated with these earthquakes, from which acceleration, velocity and displacement time-series, Fourier amplitude spectra of acceleration, and acceleration response spectra have been computed. 598 recordings from the New Zealand database are identified as being suitable for future use in time-domain analyses of structural response. All data are publicly available at http://info.geonet.org.nz/x/TQAdAQ.


Author(s):  
J. L. Beck ◽  
P. M. Randal ◽  
R. T. Hefford

The Engineering Seismology section of the Physics and Engineering Laboratory, DSIR, has recently published the above volume presenting the results of computer analyses of twenty, three-component, accelerograms recorded by the New Zealand Strong-Motion Network. It contains a brief introduction, three tables summarising the accelerogram characteristics, site information and earthquake information, and the results of the computer analyses. The results presented for each accelerogram begin with a heading page, followed by computer plots of acceleration, velocity and displacement histories, acceleration response spectra and Fourier amplitude spectra. The spectral values are also tabulated.


The subduction zone under the east coast of the North Island of New Zealand comprises, from east to west, a frontal wedge, a fore-arc basin, uplifted basement forming the arc and the Central Volcanic Region. Reconstructions of the plate boundary zone for the Cainozoic from seafloor spreading data require the fore-arc basin to have rotated through 60° in the last 20 Ma which is confirmed by palaeomagnetic declination studies. Estimates of shear strain from geodetic data show that the fore-arc basin is rotating today and that it is under extension in the direction normal to the trend of the plate boundary zone. The extension is apparently achieved by normal faulting. Estimates of the amount of sediments accreted to the subduction zone exceed the volume of the frontal wedge: underplating by the excess sediments is suggested to be the cause of late Quaternary uplift of the fore-arc basin. Low-temperature—high-pressure metamorphism may therefore be occurring at depth on the east coast and high-temperature—low-pressure metamorphism is probable in the Central Volcanic Region. The North Island of New Zealand is therefore a likely setting for a paired metamorphic belt in the making.


Author(s):  
Jian Zhang ◽  
Dick Beetham ◽  
Grant Dellow ◽  
John X. Zhao ◽  
Graeme H. McVerry

A New empirical model has been developed for predicting liquefaction-induced lateral spreading displacement and is a function of response spectral displacements and geotechnical parameters. Different from the earlier model of Zhang and Zhao (2005), the application of which was limited to Japan and California, the new model can potentially be applied anywhere if ground shaking can be estimated (by using local strong-motion attenuation relations). The new model is applied in New Zealand where the response spectral displacement is estimated using New Zealand strong-motion attenuation relations (McVerry et al. 2006). The accuracy of the new model is evaluated by comparing predicted lateral displacements with those which have been measured from aerial photos or the width of ground cracks at the Landing Road bridge, the James Street loop, the Whakatane Pony Club and the Edgecumbe road and rail bridges sites after the 1987 Edgecumbe earthquake. Results show that most predicted errors (defined as the ratio of the difference between the measured and predicted lateral displacements to the measured one) from the new model are less than 40%. When compared with earlier models (Youd et al. 2002, Zhang and Zhao 2005), the new model provides the lowest mean errors.


2020 ◽  
Author(s):  
Sreeram Reddy Kotha ◽  
Graeme Weatherill ◽  
Dino Bindi ◽  
Fabrice Cotton

<p>Ground-Motion Models (GMMs) characterize the random distributions of ground-motions for a combination of earthquake source, wave travel-path, and the effected site’s geological properties. Typically, GMMs are regressed over a compendium of strong ground-motion recordings collected from several earthquakes recorded at multiple sites scattered across a variety of geographical regions. The necessity of compiling such large datasets is to expand the range of magnitude, distance, and site-types; in order to regress a GMM capable of predicting realistic ground-motions for rare earthquake scenarios, e.g. large magnitudes at short distances from a reference rock site. The European Strong-Motion (ESM) dataset is one such compendium of observations from a few hundred shallow crustal earthquakes recorded at a several hundred seismic stations in Europe and Middle-East.</p><p>We developed new GMMs from the ESM dataset, capable of predicting both the response spectra and Fourier spectra in a broadband of periods and frequencies, respectively. However, given the clear tectonic and geological diversity of the data, possible regional and site-specific differences in observed ground-motions needed to be quantified; whilst also considering the possible contamination of data from outliers. Quantified regional differences indicate that high-frequency ground-motions attenuate faster with distance in Italy compared to the rest of Europe, as well as systematically weaker ground-motions from central Italian earthquakes. In addition, residual analyses evidence anisotropic attenuation of low frequency ground-motions, imitating the pattern of shear-wave energy radiation. With increasing spatial variability of ground-motion data, the GMM prediction variability apparently increases. Hence, robust mixed-effects regressions and residual analyses are employed to relax the ergodic assumption.</p><p>Large datasets, such as the ESM, NGA-West2, and from KiK-Net, provide ample opportunity to identify and evaluate the previously hypothesized event-to-event, region-to-region, and site-to-site differences in ground-motions. With the appropriate statistical methods, these variabilities can be quantified and applied in seismic hazard and risk predictions. We intend to present the new GMMs: their development, performance and applicability, prospective improvements and research needs.</p>


Author(s):  
G. H. McVerry

Probabilistic techniques for seismic hazard analysis have
come into vogue in New Zealand for both the assessment of major projects and the development and review of seismic design codes. However, there are considerable uncertainties in the modelling
 of the strong-motion attenuation, which is necessarily based largely on overseas data. An excellent agreement is obtained between an average 5% damped response spectrum for New Zealand alluvial sites in the 20 to 59 km distance range and 5.4 to 6.0 magnitude class and that given by a Japanese model. Unfortunately, this corresponds to only about half the amplitude levels of 150 year spectra relevant to code design. The much more rapid decay
of ground shaking with distance in New Zealand has led to a considerable modification based on maximum ground acceleration
data from the Inangahua earthquake of the distance-dependence
of the Japanese response spectra model. Less scatter in New Zealand data has resulted in adopting a lower standard deviation for the attenuation model, which is important in reducing the considerable "probabilistic enhancement" of the hazard estimates. Regional differences in attenuation shown by intensities are difficult to resolve from the strong-motion acceleration data, apart from lower accelerations in Fiordland.


Author(s):  
P. W. Taylor

This article reviews, at an elementary level, the ways in which information from strong-motion earthquake records may be presented. The various methods of presentation are illustrated with reference to the strong-motion records obtained at Pacoima Dam, in the San Fernando earthquake of 1971. As acceleration response spectra from the basis of most codes for the design of earthquake resistant structures, the historical development of response spectra is traced from the initial concept. Simplification of presentation by the use of 'pseudo' response spectra, and the use of spectra to define earthquake intensity are outlined.


Author(s):  
Ricky L. Chhangte ◽  
Tauhidur Rahman ◽  
Ivan G. Wong

ABSTRACT In this study, a ground-motion model (GMM) for deep intraslab subduction zone earthquakes in northeastern India (NEI) and adjacent regions, including portions of Bangladesh, Bhutan, China, Myanmar, and Nepal, is developed. Strong-motion data for deep intraslab earthquakes in NEI are very sparse, so it is not possible to develop a robust empirical GMM; hence, we used the stochastic point-source model to develop a new GMM. The model is based on ground-motion simulations of 36,500 Mw 5–8 earthquakes and epicentral distances of 50–300 km. We used region-specific key seismic parameters, for example, stress parameter, quality factor, and path duration in ground-motion simulation. Sensitivity analyses were also performed to evaluate the bias of each key seismic input parameter. We compared our GMM with the existing strong-motion data and compared our model with those of Lin and Lee (2008), Abrahamson et al. (2016), and Idini et al. (2017), which were developed for intraslab earthquakes based on VS30 and hypocentral depth. Our model gives higher values compared with their GMMs. Both peak ground acceleration and spectral acceleration values are estimated for NEI and adjacent regions intraslab earthquakes.


Sign in / Sign up

Export Citation Format

Share Document