scholarly journals Assessing the impact of climate change and sea level rise on shrimp farming in Can Gio district, Ho Chi Minh City

2019 ◽  
Vol 14 (9) ◽  
pp. 187 ◽  
Author(s):  
Tran Van Thuong ◽  
Nguyen Huy Thach

Can Gio is only coastal district of the Ho Chi Minh City. It plays a vitally important role in contributing aquatic food in general and shrimp in particular to residents of the city. However, the shrimp farming in there has been significantly fluctuated by climate change and sea level rise impacts in recent years. By approaching community, and using several sectors into applied statistic method, the article quantitated the change of shrimp farming in the study area in times of climate change and sea level rise.

2021 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Evgeniia A. Kostianaia ◽  
Andrey G. Kostianoy ◽  
Mikhail A. Scheglov ◽  
Aleksey I. Karelov ◽  
Alexander S. Vasileisky

Abstract This article considers various aspects of the impact of climate change on the railway infrastructure and operations. A brief international overview and the importance of this issue for Russia are given. Temperature effects, permafrost thawing, strong winds, floods and sea level rise, long-term effects, and adaptation measures are discussed. In conclusion, the authors give several recommendations on further research in this area, and highlight that special attention should be given to the areas in the Russian Federation which already face or might soon experience damage from storm events or flooding and sea level rise, namely Kaliningrad Region on the Baltic Sea, the area between Tuapse and Adler in Krasnodar Region on the Black Sea, and on Sakhalin Island from the side of the Sea of Japan.


2020 ◽  
Vol 58 (1) ◽  
pp. 70
Author(s):  
Phuong Ha Tran

Currently, in the context of climate change, droughts, salinity intrusion, sea level rise etc. and through the reality, it can be seen that the structure of land use (land use) in Tra Vinh province has been impacted quite strongly. The salinity intrusion, flooding and drought have increased in recent years, requiring appropriately comprehensive and proactive solutions. First and foremost, it’s a solution to change the structure of land use in combination with the change of seed structure and crop production structure to ensure efficient and sustainable development. For an overview of these changes as well as predictions for later years, the assessment of the impact of sea level rise on the average scenario (2030) affects the structure of land use by 2030 compared to the land use data in Tra Vinh in 2016, the results show that the areas flooded under the scenario of climate change and sea level rise RCP6.0  in 2030 are at risk of land use change.[TT1]  The land area has the risk of land use change in the whole province is nearly 24,235 ha. In which the most affected land area is specializing in rice land occupies 71%, area aquaculture (11%), paddy land remaining (8%), especially 4% of residential land in rural areas will be affected, this will directly affect the lives of people in the shallow village. [TT1]Need to revise


2018 ◽  
Vol 54 (4B) ◽  
pp. 260
Author(s):  
Nguyen Viet Ky

Ho Chi Minh City has 7 aquifers with different distributions, ascending from the east, western-north to eastern-southeast with total potential reserves of about 1.65 million mP3P of fresh water/day, potential reserves of underground water brackish-salty approximately 2.25 million mP3P/day. This resource is invaluable for the development of the city today and the future. However, groundwater resources are at risk of depletion of reserves, quality under the impact of climate change and sea level rise. In this paper, the authors focus on evaluating the impact of rising sea levels to shift the boundaries of the aquifer salinity, which narrow the area of fresh water and diminishing reserves of fresh water . To assess, first based on climate change scenarios and sea level rise has been Vietnam announced in 2012, at the same time as the underground water is exploited more constant (the maximum amount of water extraction in 2015 basis), the authors conducted for running surface flow model to get the water level data at some point to put into models of groundwater flow. Thanks to model groundwater flow, the authors showed that the sea level rise significantly shift the boundaries of the aquifer salinity toward the inner city. The area contains fresh water and reduced water reserves only light compared with present reserves.


2021 ◽  
Vol 23 (2-3) ◽  
pp. 115-132
Author(s):  
Łukasz Kułaga

Abstract The increase in sea levels, as a result of climate change in territorial aspect will have a potential impact on two major issues – maritime zones and land territory. The latter goes into the heart of the theory of the state in international law as it requires us to confront the problem of complete and permanent disappearance of a State territory. When studying these processes, one should take into account the fundamental lack of appropriate precedents and analogies in international law, especially in the context of the extinction of the state, which could be used for guidance in this respect. The article analyses sea level rise impact on baselines and agreed maritime boundaries (in particular taking into account fundamental change of circumstances rule). Furthermore, the issue of submergence of the entire territory of a State is discussed taking into account the presumption of statehood, past examples of extinction of states and the importance of recognition in this respect.


The Holocene ◽  
2021 ◽  
pp. 095968362110482
Author(s):  
Kelvin W Ramsey ◽  
Jaime L. Tomlinson ◽  
C. Robin Mattheus

Radiocarbon dates from 176 sites along the Delmarva Peninsula record the timing of deposition and sea-level rise, and non-marine wetland deposition. The dates provide confirmation of the boundaries of the Holocene subepochs (e.g. “early-middle-late” of Walker et al.) in the mid-Atlantic of eastern North America. These data record initial sea-level rise in the early Holocene, followed by a high rate of rise at the transition to the middle Holocene at 8.2 ka, and a leveling off and decrease in the late-Holocene. The dates, coupled to local and regional climate (pollen) records and fluvial activity, allow regional subdivision of the Holocene into six depositional and climate phases. Phase A (>10 ka) is the end of periglacial activity and transition of cold/cool climate to a warmer early Holocene. Phase B (10.2–8.2 ka) records rise of sea level in the region, a transition to Pinus-dominated forest, and decreased non-marine deposition on the uplands. Phase C (8.2–5.6 ka) shows rapid rates of sea-level rise, expansion of estuaries, and a decrease in non-marine deposition with cool and dry climate. Phase D (5.6–4.2 ka) is a time of high rates of sea-level rise, expanding estuaries, and dry and cool climate; the Atlantic shoreline transgressed rapidly and there was little to no deposition on the uplands. Phase E (4.2–1.1 ka) is a time of lowering sea-level rise rates, Atlantic shorelines nearing their present position, and marine shoal deposition; widespread non-marine deposition resumed with a wetter and warmer climate. Phase F (1.1 ka-present) incorporates the Medieval Climate Anomaly and European settlement on the Delmarva Peninsula. Chronology of depositional phases and coastal changes related to sea-level rise is useful for archeological studies of human occupation in relation to climate change in eastern North America, and provides an important dataset for future regional and global sea-level reconstructions.


Sign in / Sign up

Export Citation Format

Share Document