A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020

2021 ◽  
Vol 42 (5) ◽  
pp. 479-495
Author(s):  
Bo-Yeong Ahn ◽  
Yoo-Jun Kim ◽  
Baek-Jo Kim ◽  
Yong-Hee Lee
Keyword(s):  
2012 ◽  
Vol 140 (7) ◽  
pp. 2044-2063 ◽  
Author(s):  
Melissa A. Nigro ◽  
John J. Cassano ◽  
Matthew A. Lazzara ◽  
Linda M. Keller

Abstract The Ross Ice Shelf airstream (RAS) is a barrier parallel flow along the base of the Transantarctic Mountains. Previous research has hypothesized that a combination of katabatic flow, barrier winds, and mesoscale and synoptic-scale cyclones drive the RAS. Within the RAS, an area of maximum wind speed is located to the northwest of the protruding Prince Olav Mountains. In this region, the Sabrina automatic weather station (AWS) observed a September 2009 high wind event with wind speeds in excess of 20 m s−1 for nearly 35 h. The following case study uses in situ AWS observations and output from the Antarctic Mesoscale Prediction System to demonstrate that the strong wind speeds during this event were caused by a combination of various forcing mechanisms, including katabatic winds, barrier winds, a surface mesocyclone over the Ross Ice Shelf, an upper-level ridge over the southern tip of the Ross Ice Shelf, and topographic influences from the Prince Olav Mountains. These forcing mechanisms induced a barrier wind corner jet to the northwest of the Prince Olav Mountains, explaining the maximum wind speeds observed in this region. The RAS wind speeds were strong enough to induce two additional barrier wind corner jets to the northwest of the Prince Olav Mountains, resulting in a triple barrier wind corner jet along the base of the Transantarctic Mountains.


2015 ◽  
Vol 12 (13) ◽  
pp. 4005-4015 ◽  
Author(s):  
K. Matsuno ◽  
A. Yamaguchi ◽  
S. Nishino ◽  
J. Inoue ◽  
T. Kikuchi

Abstract. To evaluate the effect of atmospheric turbulence on a marine ecosystem, high-frequency samplings (two to four times per day) of a mesozooplankton community and the gut pigment of dominant copepods were performed at a fixed station in the Chukchi Sea from 10 to 25 September 2013. During the study period, a strong wind event (SWE) was observed on 18 September. After the SWE, the biomass of chlorophyll a (Chl a) increased, especially for micro-size (> 10 μm) fractions. The zooplankton abundance ranged from 23 610 to 56 809 ind. m−2 and exhibited no clear changes as a result of the SWE. In terms of abundance, calanoid copepods constituted the dominant taxa (mean: 57 %), followed by barnacle larvae (31 %). Within the calanoid copepods, small-sized Pseudocalanus spp. (65 %) and large-sized C. glacialis (30 %) dominated. In the population structure of C. glacialis, copepodid stage 5 (C5) dominated, and the mean copepodid stage did not vary with the SWE. The dominance of accumulated lipids in C5 and C6 females with immature gonads indicated that they were preparing for seasonal diapause. The gut pigment of C. glacialis C5 was higher at night and was correlated with ambient Chl a (Chl a, and a significant increase was observed after the SWE (2.6 vs. 4.5 ng pigment ind.−1). The grazing impact by C. glacialis C5 was estimated to be 4.14 mg C m−2 day−1, which corresponded to 0.5−4.6 % of the biomass of the micro-size phytoplankton. Compared with the metabolic food requirement, C. glacialis feeding on phytoplankton accounted for 12.6 % of their total food requirement. These facts suggest that C. glacialis could not maintain their population by feeding solely on phytoplankton and that other food sources (i.e., microzooplankton) must be important in autumn. As observed by the increase in gut pigment, the temporal phytoplankton bloom, which is enhanced by the atmospheric turbulence (SWE) in autumn, may have a positive effect on copepod nutrition.


2019 ◽  
Vol 145 (720) ◽  
pp. 1267-1280
Author(s):  
Hataek Kwon ◽  
Sang‐Jong Park ◽  
Solji Lee ◽  
Baek‐Min Kim ◽  
Taejin Choi ◽  
...  

2019 ◽  
Vol 131 ◽  
pp. 01037
Author(s):  
Ting Xu ◽  
Wei Niu

Low-level wind shear is a hazardous phenomenon for aircraft, a low-level wind shear case of Xining airport selected from pilot reports is analysed in this paper. Using ERA-Interim data, the weather pattern and characteristics of wind distribution are discussed. The result indicates cold high pressure accompanied by strong wind and terrain is the main reason of this low-level wind shear case.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 193
Author(s):  
Larry J. Pratt ◽  
E. Jason Albright ◽  
Irina Rypina ◽  
Houshuo Jiang

The Lagrangian and Eulerian structure and dynamics of a strong wind event in the Tokar Gap region are described using a Weather Research and Forecasting (WRF) model hindcast for 2008. Winds in the Tokar Gap reach 25 m s−1 and remain coherent as a jet far out over the Red Sea, whereas equally strong wind jets occurring in neighboring gaps are attenuated abruptly by jump-like hydraulic transitions that occur just offshore of the Sudan coast. The transition is made possible by the supercritical nature of the jets, which are fed by air that spills down from passes at relatively high elevation. By contrast, the spilling flow in the ravine-like Tokar Gap does not become substantially supercritical and therefore does not undergo a jump, and also carries more total horizontal momentum. The Tokar Wind Jet carries some air parcels across the Red Sea and into Saudi Arabia, whereas air parcel trajectories in the neighboring jets ascend as they cross through the jumps, then veer sharply to the southeast and do not cross the Red Sea. The mountain parameter Nh/U is estimated to lie in the range of 1.0–4.0 for the general region, a result roughly consistent with a gap jet having a long extension, and supercritical flows spilling down from higher elevation passes. The strong event is marked by the formation of a feature with a vertical cellular structure in the upstream entrance region of the Tokar Gap, a feature absent from the more moderate events that occur throughout the summer. The cell contains descending air parcels that are fed into the Tokar Gap and one of the neighboring gaps. An analysis of the Bernoulli function along air parcel trajectories reveals an approximate balance between the loss of potential energy and gain of internal energy and pressure, with surprisingly little contribution from kinetic energy, along the path of the descending flow. The winds in all gaps attain the critical wind speed nominally required to loft dust into the atmosphere, though only the Tokar Gap has a broad, silty delta region capable of supplying particulate matter for dust storms.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sultan Al-Yahyai ◽  
Yassine Charabi

In arid and semiarid regions, dust storms are common during windy seasons. Strong wind can blow loose sand from the dry surface. The rising sand and dust is then transported to other places depending on the wind conditions (speed and direction) at different levels of the atmosphere. Considering dust as a moving object in space and time, trajectory calculation then can be used to determine the path it will follow. Trajectory calculation is used as a forecast supporting tool for both operational and research activities. Predefined dust sources can be identified and the trajectories can be precalculated from the Numerical Weather Prediction (NWP) forecast. In case of long distance transported dust, the tool should allow the operational forecaster to perform online trajectory calculation. This paper presents a case study for using trajectory calculation based on NWP models as a forecast supporting tool in Oman Meteorological Service during some dust storm events. Case study validation results showed a good agreement between the calculated trajectories and the real transport path of the dust storms and hence trajectory calculation can be used at operational centers for warning purposes.


2015 ◽  
Vol 12 (11) ◽  
pp. 8789-8817 ◽  
Author(s):  
N. Yokoi ◽  
K. Matsuno ◽  
M. Ichinomiya ◽  
A. Yamaguchi ◽  
S. Nishino ◽  
...  

Abstract. An increase in atmospheric turbulence in the Chukchi Sea due to the recent drastic sea-ice reduction during summer months has been reported. The importance of the effects of this atmospheric turbulence on the marine ecosystem in this region, however, is not fully understood. To evaluate the effects of atmospheric turbulence on the marine ecosystem, high-frequency sampling (daily) from five layers of the microplankton community between 0 and 30 m at a fixed station in the Chukchi Sea from 10 through 25 September 2013 was conducted. During the study period, a strong wind event (SWE) was observed on 18 and 19 September. The abundance of microplankton was 2.6 to 17.6 cells mL−1, with a maximum abundance reported at 20 m on 22 September, while diatoms were the most dominant taxa throughout the study period. The abundances of diatoms, dinoflagellates and ciliates ranged between 1.6 and 14.1, 0.5 and 2.4 cells mL−1 and 0.1 and 2.8 cells mL−1, respectively. Diatoms belonging to seven genera consisting of 35 species (Cylindrotheca closterium and Leptocylindrus danicus were dominant), dinoflagellates belonging to seven genera consisting of 25 species (Prorocentrum balticum and Gymnodinium spp. were dominant) and ciliates belonging to seven genera consisting of eight species (Strobilidium spp. and Strombidium spp. were dominant) were identified. Within the microplankton species, there were 11 species whose abundance increased after the SWE, while there was no species whose abundance decreased following the SWE. It is conjectured that atmospheric turbulences, such as that of an SWE, may supply sufficient nutrients to the surface layer that then enhance the small bloom under the weak stratification of the Chukchi Sea shelf during the autumn months. After the bloom, the dominant diatom community then shifts from a centric diatom to a pennate diatom, thus suggesting that an SWE accelerates the seasonal succession of the microplankton community from summer to winter.


Sign in / Sign up

Export Citation Format

Share Document