Computational fluid analysis for flow characteristics according to brine spray nozzle shape

2021 ◽  
Vol 35 (1) ◽  
pp. 13-17
Author(s):  
Eui-Hyeok Song ◽  
Kye-Bock Lee
2016 ◽  
Vol 11 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Dan-yang Li ◽  
Shu Liu ◽  
Xiao-ning Wang

Abstract The pneumatic conveying experiment bed has been established to study the flow characteristics of air- solids two-phase flow in horizontal pipeline. Euler model was applied to simulate it based on analysis of Gambit and fluid analysis software-fluent. The simulated results indicated: under the same gas phase conveying flow and pressure, the bigger particle diameter is, the bigger pressure drop is in the horizontal pipeline. The smaller particle diameter is, the more uniform of the particle’s distribution is, and the more easily obtaining the acceleration is. Particle concentration at the bottom of the horizontal pipe is increasing in the axial direction, while close to the tail pipe it will be reduce. The simulated conclusion is consistent with the actual measurement results, herewith rendering some footing for engineering design and theoretical research on pneumatic conveying systems.


2005 ◽  
Vol 109 (1092) ◽  
pp. 75-82 ◽  
Author(s):  
V. I. Biryukov ◽  
S. A. Glazkov ◽  
A. R. Gorbushin ◽  
A. I. Ivanov ◽  
A. V. Semenov

Abstract The results are presented for a cycle of experimental investigations of flow field characteristics (static pressure distribution, static pressure fluctuations, upwash, boundary-layer parameters) in the perforated test section of the transonic TsAGI T-128 Wind Tunnel. The investigations concern the effect of nozzle shape, wall open-area ratio, Mach and Reynolds numbers on the above-outlined flow characteristics. During the tests, the main Wind-tunnel drive power is measured. Optimal parameters of the nozzle shape and test section perforation are obtained to minimise acoustic perturbations in the test section and their non-uniformity in frequency, static pressure field non-uniformity, nozzle and test section drag and, accordingly, required main Wind-tunnel drive power.


2014 ◽  
Vol 660 ◽  
pp. 704-708 ◽  
Author(s):  
Norzelawati Asmuin ◽  
Mohd Farid Sies ◽  
Mohamad Khairi Hassan ◽  
M.R. Pairan ◽  
N.A. Nor Salim ◽  
...  

Concept of the water mist spray in CKV system is to clean the gas filter at kitchen hood. This research aims to analyze the behavior and flow characteristics of water mist spray produced by spray nozzle. A computational fluid dynamics (CFD) model with k-epsilon turbulence method is a simulation tool for the characterization of sprays. The fluid flow for case1, case 2 and case 3 have the same pattern type of graph. Changes have seen in fluid flow pressure and velocity. The value of fluid flow pressure was decreasing from the first point at water inlet until to the last point at nozzle orifice. The total pressure values for case 1, case 2, and case 3 are 99.997 kPa, 199.991 kPa and 299.992 kPa respectively. The highest velocity is recorded at the liquid tip of the nozzle which is about 144.15 m/s for case 3. In the other hand, the highest value of fluid flow pressure was recorded at the water inlet part.


Author(s):  
Young-Do Choi ◽  
Jea-Ik Lim ◽  
You-Taek Kim ◽  
Young-Ho Lee

The purpose of this study is to examine the optimum configuration of nozzle shape to further optimize the cross-flow hydraulic turbine structure and improve the performance. The results show that CFD analysis for the cross-flow turbine can be adopted as a useful method to examine the internal flow and turbine performance in detail. Pressure on the runner blade in Stage 1 and velocity at nozzle outlet have close relation to the turbine performance. The performance characteristics of cross-flow turbine have both impulse turbine and reaction turbine simultaneously.


2020 ◽  
Vol 58 (8) ◽  
pp. 550-559
Author(s):  
Jae-Hong Kwon ◽  
Ji-A Lee ◽  
Kyeng-Uk Lee ◽  
Jeong-Whan Han

Recently, various worldwide studies have been conducted to improve converter operation by modifying the lance nozzle. In this study, a numerical analysis of the lance nozzle was conducted to improve the dephosphorization efficiency, and to reduce blowing time. The lance nozzle was designed in the form of an abnormal expansion type nozzle capable of increasing the oxygen supply rate. ANSYS FLUENT, a commercial flow analysis program, was used to verify the flow characteristics of the supersonic jet. The nozzle shape was designed according to the ratio of exit diameter to throat diameter, and an analysis was carried out based on the change in inlet flow rate, to confirm the influence of the oxygen supply flow rate. The velocity of the oxygen jet was the fastest for the normal expansion type nozzle and decreased with the abnormal expansion type nozzle. In addition, the oxygen jet velocity tended to increase with the oxygen flow rate.


2012 ◽  
Vol 233 ◽  
pp. 35-38
Author(s):  
Xiang Hui Lu ◽  
Dian Rong Gao

This paper analyses the flow of the double nozzle flapper valve. Three-dimensional model is established with software Pro/E, fluid analysis software is used for modeling and meshing, CFD method is applied for researching pressure, and flow characteristics of the fixed damping hole is researched when parameters of double nozzle flapper valve is varied. The results show that: the highest velocity through the fixed orifice hole is about 150m/s, the pressure is about 5.9MPa; Using orthogonal test to analyze the simulation results, it is obtained that the power losses of the double nozzle flapper with the change of the diameter, length and the angle of the fixed orifice, the influencing factors on the power losses are the diameter, length and the angle, and the best parameter combination through orthogonal table analysis is gained, which can provide the reference for the whole designing of the double nozzle flapper valve.


Sign in / Sign up

Export Citation Format

Share Document