scholarly journals A Study on the Supersonic Jet Nozzle to Improve of the Operating Efficiency of the Converter Process

2020 ◽  
Vol 58 (8) ◽  
pp. 550-559
Author(s):  
Jae-Hong Kwon ◽  
Ji-A Lee ◽  
Kyeng-Uk Lee ◽  
Jeong-Whan Han

Recently, various worldwide studies have been conducted to improve converter operation by modifying the lance nozzle. In this study, a numerical analysis of the lance nozzle was conducted to improve the dephosphorization efficiency, and to reduce blowing time. The lance nozzle was designed in the form of an abnormal expansion type nozzle capable of increasing the oxygen supply rate. ANSYS FLUENT, a commercial flow analysis program, was used to verify the flow characteristics of the supersonic jet. The nozzle shape was designed according to the ratio of exit diameter to throat diameter, and an analysis was carried out based on the change in inlet flow rate, to confirm the influence of the oxygen supply flow rate. The velocity of the oxygen jet was the fastest for the normal expansion type nozzle and decreased with the abnormal expansion type nozzle. In addition, the oxygen jet velocity tended to increase with the oxygen flow rate.

Author(s):  
G. M. Raposo ◽  
A. O. Nieckele

Development of small size and weight separation equipment are crucial for the petroleum off-shore exploration. Since centrifugal fields are several times stronger than the gravity field, cyclonic separation has became very important as a unit process for compact gas-liquid, liquid-liquid and solid-liquid separation. The major difference between the various cyclones is their geometry. Cyclone optimization for different uses is, every year, less based on experiments and more based on mathematical models. In the present work, the flow field inside high oil content hydrocyclones is numerically obtained with FLUENT. The performance of two turbulence models, Reynolds Stress Model (RSM) and Large Eddy Simulation (LES), to predict the flow inside a high oil content hydrocyclone, is investigated by comparing the results with experimental data available in the literature. All models overpredicted the tangential component, especially at the reverse cone region. However, the prediction of the tangential turbulent fluctuations with LES was significant better than the RSM prediction. The influences of the inlet flow rate and hydrocyclone length in the flow were also evaluated. RSM model was able to foresee correctly, in agreement with experimental data, the correct tendency of pressure drop reduction with decreasing inlet flow rate and increasing length.


Author(s):  
Victor Hugo Hidalgo Diaz ◽  
XianWu Luo ◽  
RenFang Huang ◽  
Edgar Cando

Though commercial CFD codes are widely used in flow analysis, but there are free/open source programs which have been applying for computational fluid dynamics. An open source software makes it possible to customize the solver according to the flow features. In the present paper, cavitating flows over 2D NACA66 hydrofoil were simulated based on open source software, where SALOME is used for mesh generation, OpenFOAM for flow solution under Debian GNU/Linux operating system. The results show the simulated cavitating flow characteristics such as cavity revolution, vortex shedding, cavitation induced pressure vibrations, etc. are validated by experiments and results obtained from proprietary software as Ansys Fluent. Thus, the proposed numerical methods based on open source platform are suitable for flow simulations, even for depicting the complicated physics of cavitation.


2012 ◽  
Vol 12 (04) ◽  
pp. 1250066 ◽  
Author(s):  
NASRUL HADI JOHARI ◽  
KAHAR OSMAN ◽  
ZULIAZURA MOHD SALLEH ◽  
JUHARA HARON ◽  
MOHAMMED RAFIQ ABDUL KADIR

The presence of tracheal stenosis would alter the flow path of the inhaled and exhaled air and subsequently changed the flow behavior inside the trachea and main bronchi. Therefore, it was our aim to investigate and predict the changes of flow behavior along with the pressure distribution with respect to the presence of stenosis on the tracheal lumen. In this study, actual CT scan images were extracted for flow modeling purposes. The images were then reconstructed to mimic the effect of different stenosis locations. This method overcomes the problem of the absence of actual images for different tracheal stenosis locations. The flow was subjected to different breathing situations corresponding to low, moderate and rigorous activities. The results showed that for flow over the stenosis farthest from the bifurcation, the pressure drop was insignificant for all breathing situations. At the same time, the inlet flow rate at the bifurcation showed less air flows into the right lung as compared to healthy flow conditions. On the other hand, for the flow over stenosis closest to the bifurcation, the pressure drop near the bifurcation area was very significant at high flow rate.


Author(s):  
Silvia Araujo Daza ◽  
Urbano Montañez Villamizar

Abstract This work presents the methodology and results of the optimization of the internals (Inlet distributor, oil and water collectors) of a 20,000 BPD (0.037 m3/s) gun-barrel tank starting from an existing design. Computational fluid dynamics (CFD) was applied to simulate and evaluate the performance of various internal configurations. These simulations were performed to determine the best configuration to ensure efficient separation of the oil-water mixture and oil with a low BSW content < 2% at the outlet. The simulations were carried out using the commercial software ANSYS Fluent under the two-phase flow VOF model and k-ε realizable turbulence model. Further CFD simulations were performed to evaluate the behavior of the gun barrel tank under different operating conditions (Different inlet flow rate) and to determine the maximum operation flow which allows obtaining the crude-oil with a maximum BSW content of 0.5%. From the simulation results, an operating curve (operating flow vs retention time) was constructed. This information allows, in practice, to identify the inlet flow rate based on the desired content of BSW in the separated oil.


2019 ◽  
Vol 8 (3) ◽  
pp. 7453-7459

The exhaust from the nozzle will be at very high temperature and the high temperature exhausts effect the launch pad and guide stand. In this research, the computational analysis is done on Hybrid Rocket Nozzle Exhaust and Its Effects on Launch Pad and Guide Stand. The flow characteristics such as pressure, temperature, velocity and Mach number at different time period have been studied for various exit geometries using ANSYS Fluent solver. Exhaust speeds vary, depending on the expansion proportion of the nozzle. The rocket nozzle along with guide stand is modelled. The aeroacoustics effects from the nozzle on Launch Pad and Guide Stand have been studied separately using acoustics mode


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 881-896
Author(s):  
Chunrui Wu ◽  
Tiechen Zhang ◽  
Jiale Fu ◽  
Xiaori Liu ◽  
Boxiong Shen

Abstract In this article, lattice Boltzmann method (LBM) is used to simulate the multi-scale flow characteristics of the engine particulate filter at the pore scale and the representative elementary volume (REV) scale, respectively. Four kinds of random wall-pore structures are considered, which are circular random structure, square random structure, isotropic quartet structure generation set (QSGS), and anisotropic QSGS, with difference analysis done. In terms of the REV scale, the influence of different inlet flow velocities and wall permeabilities on the flow in single channel is analyzed. The result indicates that the internal seepage laws of random structures constructed in this article and single channel are in accordance with Darcy’s law. Circular random structure has better permeability than square random structure. Isotropic QSGS has better fluidity than anisotropic one. The flow in single channel is similar to Poiseuille flow. The flow lines in the channel are complicated and a large number of vortices appear at the ends of channel with high inlet flow rate. With the increase of inlet velocity, the static pressure in channel gradually increases along the axial direction as well as the seepage velocity. The temperature field in the channel becomes more uniform as the flow velocity increases, and the higher temperature distribution appears on the wall of the porous media.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110236
Author(s):  
Gang Li ◽  
Jinli Zhang ◽  
Jia Liu ◽  
Tao Luo ◽  
Yu Xi

Pb(II) leakage from batteries, dyes, construction materials, and gasoline threaten human health and environmental safety, and suitable adsorption materials are vitally important for Pb(II) removal. Bone char is an outstanding adsorbent material for water treatment, and the effectiveness in Pb(II) removing need to be verified. In this paper, the transport characteristics of Pb(II) in columns filled with a sand and bone char mixture were studied at the laboratory scale, and the influences of the initial concentration, column height, inlet flow rate, and competing ion Cu(II) on Pb(II) adsorption and transport were analyzed. The Thomas and Dose-Response models were used to predict the test results, and the mechanisms of Pb(II) adsorption on bone char were investigated. The results showed that the adsorption capacity of the bone char increased with increasing column height and decreased with increasing initial Pb(II) concentration, flow rate, and Cu(II) concentration. The maximum adsorption capacity reached 38.466 mg/g and the saturation rate was 95.8% at an initial Pb(II) concentration of 200 mg/L, inlet flow rate of 4 mL/min, and column height of 30 cm. In the competitive binary system, the higher the Cu(II) concentration was, the greater the decreases in the breakthrough and termination times, and the faster the decrease in the Pb(II) adsorption capacity of the bone char. The predicted results of the Dose-Response model agreed well with the experimental results and were significantly better than those of the Thomas model. The main mechanisms of Pb(II) adsorption on bone char include a surface complexation reaction and the decomposition-replacement-precipitation of calcium hydroxyapatite (CaHA). Based on selectivity, sensitivity, and cost analyses, it can be concluded that bone char is a potential adsorbent for Pb(II)-containing wastewater treatment.


Author(s):  
Christoph Bettag ◽  
Christian von der Brelie ◽  
Florian Baptist Freimann ◽  
Ulrich-Wilhelm Thomale ◽  
Veit Rohde ◽  
...  

AbstractDiagnosis of symptomatic valve malfunction in hydrocephalic patients treated with VP-Shunt (VPS) might be difficult. Clinical symptoms such as headache or nausea are nonspecific, hence cerebrospinal fluid (CSF) over- or underdrainage can only be suspected but not proven. Knowledge concerning valve malfunction is still limited. We aim to provide data on the flow characteristics of explanted shunt valves in patients with suspected valve malfunction. An in vitro shunt laboratory setup was used to analyze the explanted valves under conditions similar to those in an implanted VPS. The differential pressure (DP) of the valve was adjusted stepwise to 20, 10, 6, and 4 cmH2O. The flow rate of the explanted and the regular flow rate of an identical reference valve were evaluated at the respective DPs. Twelve valves of different types (Codman CertasPlus valve n = 3, Miethke Shuntassistant valve n = 4, Codman Hakim programmable valve n = 3, DP component of Miethke proGAV 2.0 valve n = 2) from eight hydrocephalic patients (four male), in whom valve malfunction was assumed between 2016 and 2017, were replaced with a new valve. Four patients suffered from idiopathic normal pressure (iNPH), three patients from malresorptive and one patient from obstructive hydrocephalus. Post-hoc analysis revealed a significant difference (p < 0.001) of the flow rate between each explanted valve and their corresponding reference valve, at each DP. In all patients, significant alterations of flow rates were demonstrated, verifying a valve malfunction, which could not be objectified by the diagnostic tools used in the clinical routine. In cases with obscure clinical VPS insufficiency, valve deficiency should be considered.


Author(s):  
Xiaoming Chen ◽  
Yuchuan Zhu ◽  
Travis Wiens ◽  
Doug Bitner ◽  
Minghao Tai ◽  
...  

The inertance hydraulic converter relies on fluid inertance to modulate flow or pressure and is considered to be a competitive alternative to the conventional proportional hydraulic system due to its potential advantage in efficiency. As the quantification of fluid inertance, the suction flow characteristic is the crucial performance indicator for efficiency improvement. To explore the discrepancy between the passive inertance hydraulic converter featured by the check valve and the active inertance hydraulic converter driven by an equivalent 2/3 way fast switching valve in regard to suction flow characteristics, analytical models of the inertance hydraulic converters were established in MATLAB/Simulink. The validated models of the respective suction components were incorporated in the overall analytical models and their suction flow characteristics were theoretically and experimentally discussed. The analytical predictions and experimental measurements for the current configurations indicated that the active inertance hydraulic converter yields a larger transient suction flow rate than that of the passive inertance hydraulic converter due to the difference of the respective suction components. The suction flow characteristic can be modulated using the supply pressure and duty cycle, which was confirmed by experimental measurements. In addition, the suction flow characteristics are heavily affected by the resistance of the suction flow passage and switching frequency. There is a compromise between the resistance and switching frequency for inertance hydraulic converters to achieve large suction flow rate.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


Sign in / Sign up

Export Citation Format

Share Document