Effect of Heat Pipe Shape on Heat Transfer Performance

2021 ◽  
Vol 35 (2) ◽  
pp. 39-44
Author(s):  
MinSeok Cho ◽  
Bumsoo Yoon ◽  
Jinsun Kim ◽  
Seok-Ho Rhi ◽  
Kibum Kim
Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


2012 ◽  
Vol 197 ◽  
pp. 216-220
Author(s):  
Zhong Chao Zhao ◽  
Rui Ye ◽  
Gen Ming Zhou

To solve the cooling problem in modern electronic device, a kind of heat pipe radiator was designed and manufactured in this paper. The heat transfer performance of heat pipe radiator and its relationship with air velocity were investigated by experimental method. The experimental results show that the heat pipe radiator can meet the temperature requirement of electronic device with the power range from 40W to 160W. To keep the operational temperature of electronic device with power of 160W under 75°C,the air velocity should be keep at 1.7m/s. The heat dissipation performance of heat pipe radiator was enhanced with the air velocity increased from 0.2m/s to 1.7m/s.for the electronic equipment with power of 160W.


2014 ◽  
Vol 595 ◽  
pp. 24-29 ◽  
Author(s):  
Shen Chun Wu ◽  
Kuei Chi Lo ◽  
Jia Ruei Chen ◽  
Chen Yu Chung ◽  
Weie Jhih Lin ◽  
...  

This paper specifically addresses the effect of the sintering temperature curve in manufacturing nickel powder capillary structure (wick) for a loop heat pipe (LHP) with flat evaporator. The sintering temperature curve is composed of three regions: a region of increasing temperature, a region of constant temperature, and a region of decreasing temperature. The most important region is the increasing temperature region, as the rate of temperature increase directly affects the performance of the wick.When the slope of the region of increasing temperature is 0.8 (equivalent to 8 OC/min), the structure of the manufactured wick is complete, with the best heat transfer performance result. Experimental resultsshowed that the optimal heat transfer performance is 160W, the minimal total thermal resistance is approximately 0.43OC/W, and the heat flux is 17W/cm2; the optimal wick manufactured has an effective pore radius of 5.2 μm, a permeability of 5.9×10-13m2, and a porosity of 64%.


2019 ◽  
Vol 148 ◽  
pp. 878-885 ◽  
Author(s):  
Nampon Sangpab ◽  
Nobuhiro Kimura ◽  
Pradit Terdtoon ◽  
Phrut Sakulchangsatjatai ◽  
Niti Kammuang-lue ◽  
...  

Author(s):  
Shigeki Hirasawa ◽  
Tatsuya Nakamu ◽  
Tsuyoshi Kawanami ◽  
Katsuaki Shirai

The coupling of the electrocaloric effect in thin films with thermal switches has the potential to be used for efficient refrigeration. We studied the unsteady heat transfer performance and periodic thermal-switching behavior of a flat heat pipe to transfer cold energy from a changing heat source. The condenser of the flat heat pipe was the changing heat source and changed from −20 W to +20 W every 5 s. The temperature of the condenser surface changed in accordance with the heat generation of the heat source. The evaporator was a plate with a mesh wick attached to a water-flow pipe. Cold energy transferred from the condenser surface to the evaporator surface only when the temperature of the condenser surface was lower than that of the evaporator surface. We analyzed the unsteady temperature change and heat transfer performance of the flat heat pipe by numerical simulation. The analytical results showed that it was necessary to have two thermal switches to separate the heat energy and cold energy of the changing heat source. Also, it was important to reduce the thermal resistance and heat capacity of the evaporator surface to improve the unsteady heat transfer performance of the heat pipe. Next, we measured the unsteady heat transfer performance of the flat heat pipe experimentally. The experimental results showed that the thermal-switching behavior was observed when the heat generation of the heat source changed every 5 s.


2008 ◽  
Vol 2008.83 (0) ◽  
pp. _1-3_
Author(s):  
Yoshiaki NISHIO ◽  
Toshiyuki SAKAMOTO ◽  
Katsuya FUKUDA ◽  
Qiusheng LIU ◽  
Hiroaki KUTSUNA

Sign in / Sign up

Export Citation Format

Share Document