scholarly journals Isolation of suppressors of late flowering and abnormal flower shape phenotypes caused by overexpression of the SHORT VEGETATIVE PHASE gene in Arabidopsis thaliana

2009 ◽  
Vol 26 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Rym Fekih ◽  
Kana Miyata ◽  
Riichiro Yoshida ◽  
Hiroshi Ezura ◽  
Tsuyoshi Mizoguchi
Development ◽  
2020 ◽  
Vol 148 (1) ◽  
pp. dev193870
Author(s):  
Hendry Susila ◽  
Zeeshan Nasim ◽  
Katarzyna Gawarecka ◽  
Ji-Yul Jung ◽  
Suhyun Jin ◽  
...  

ABSTRACTPHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE 1 (PECT1) regulates phosphatidylethanolamine biosynthesis and controls the phosphatidylethanolamine:phosphatidylcholine ratio in Arabidopsis thaliana. Previous studies have suggested that PECT1 regulates flowering time by modulating the interaction between phosphatidylcholine and FLOWERING LOCUS T (FT), a florigen, in the shoot apical meristem (SAM). Here, we show that knockdown of PECT1 by artificial microRNA in the SAM (pFD::amiR-PECT1) accelerated flowering under inductive and even non-inductive conditions, in which FT transcription is almost absent, and in ft-10 twin sister of ft-1 double mutants under both conditions. Transcriptome analyses suggested that PECT1 affects flowering by regulating SHORT VEGETATIVE PHASE (SVP) and GIBBERELLIN 20 OXIDASE 2 (GA20ox2). SVP misexpression in the SAM suppressed the early flowering of pFD::amiR-PECT1 plants. pFD::amiR-PECT1 plants showed increased gibberellin (GA) levels in the SAM, concomitant with the reduction of REPRESSOR OF GA1-3 levels. Consistent with this, GA treatment had little effect on flowering time of pFD::amiR-PECT1 plants and the GA antagonist paclobutrazol strongly affected flowering in these plants. Together, these results suggest that PECT1 also regulates flowering time through a florigen-independent pathway, modulating SVP expression and thus regulating GA production.


2015 ◽  
Vol 168 (4) ◽  
pp. 1702-1716 ◽  
Author(s):  
Chiao-Yin Yang ◽  
Yu-Hsin Huang ◽  
Chan-Pin Lin ◽  
Yen-Yu Lin ◽  
Hao-Chun Hsu ◽  
...  

2017 ◽  
Vol 30 (11) ◽  
pp. 919-929 ◽  
Author(s):  
Daniel C. Wilson ◽  
Christine J. Kempthorne ◽  
Philip Carella ◽  
David K. Liscombe ◽  
Robin K. Cameron

Arabidopsis thaliana exhibits a developmentally regulated disease-resistance response known as age-related resistance (ARR), a process that requires intercellular accumulation of salicylic acid (SA), which is thought to act as an antimicrobial agent. ARR is characterized by enhanced resistance to some pathogens at the late adult-vegetative and reproductive stages. While the transition to flowering does not cause the onset of ARR, both processes involve the MADS-domain transcription factor SHORT VEGETATIVE PHASE (SVP). In this study, ARR-defective svp mutants were found to accumulate reduced levels of intercellular SA compared with wild type in response to Pseudomonas syringae pv. tomato. Double mutant and overexpression analyses suggest that SVP and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) act antagonistically, such that SVP is required for ARR to alleviate the negative effects of SOC1 on SA accumulation. In vitro, SA exhibited antibacterial and antibiofilm activity at concentrations similar to those measured in the intercellular space during ARR. In vivo, P. syringae pv. tomato formed biofilm-like aggregates in young susceptible plants, while this was drastically reduced in mature ARR-competent plants, which accumulate intercellular SA. Collectively, these results reveal a novel role for the floral regulators SVP and SOC1 in disease resistance and provide evidence that SA acts directly on pathogens as an antimicrobial agent. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


1997 ◽  
Vol 24 (3) ◽  
pp. 275 ◽  
Author(s):  
A. Martín Martín ◽  
D. Martínez-Herrera ◽  
H. L. Cabrera y Poch ◽  
F. Ponz

The responses of 116 ecotypes of Arabidopsis thaliana (L.) Heynh. were evaluated after inoculation with oilseed rape mosaic tobamovirus. Symptoms observed within each of the ecotypes were similar, allowing us to classify the ecotypes into five symptom groups based on stunting, abnormal flower or seed formation, and plant death. A relation between the severity of symptoms and ecotype flowering time was observed: late-flowering ecotypes developed more severe symptoms than early-flowering ones. All the symptomless ecotypes were studied under controlled environmental conditions. Two ecotypes, Wc-1 and An-1, showed resistance to ORMV infection in the form of absence of long-distance viral movement that was inoculum concentration-dependent.


1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty van Loenen-Martinet ◽  
Hetty Blankestijn de Vries

2021 ◽  
Vol 22 (11) ◽  
pp. 5550
Author(s):  
Hongshun Li ◽  
Yiwei Luo ◽  
Bi Ma ◽  
Jianqiong Hu ◽  
Zhiyuan Lv ◽  
...  

The vegetative phase transition is a prerequisite for flowering in angiosperm plants. Mulberry miR156 has been confirmed to be a crucial factor in the vegetative phase transition in Arabidopsis thaliana. The over-expression of miR156 in transgenic Populus × canadensis dramatically prolongs the juvenile phase. Here, we find that the expression of mno-miR156 decreases with age in all tissues in mulberry, which led us to study the hierarchical action of miR156 in mulberry. Utilizing degradome sequencing and dual-luciferase reporter assays, nine MnSPLs were shown to be directly regulated by miR156. The results of yeast one-hybrid and dual-luciferase reporter assays also revealed that six MnSPLs could recognize the promoter sequences of mno-miR172 and activate its expression. Our results demonstrate that mno-miR156 performs its role by repressing MnSPL/mno-miR172 pathway expression in mulberry. This work uncovered a miR156/SPLs/miR172 regulation pathway in the development of mulberry and fills a gap in our knowledge about the molecular mechanism of vegetative phase transition in perennial woody plants.


1991 ◽  
Vol 229 (1) ◽  
pp. 57-66 ◽  
Author(s):  
M. Koornneef ◽  
C. J. Hanhart ◽  
J. H. van der Veen

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Li Yang ◽  
Mingli Xu ◽  
Yeonjong Koo ◽  
Jia He ◽  
R Scott Poethig

Nutrients shape the growth, maturation, and aging of plants and animals. In plants, the juvenile to adult transition (vegetative phase change) is initiated by a decrease in miR156. In Arabidopsis, we found that exogenous sugar decreased the abundance of miR156, whereas reduced photosynthesis increased the level of this miRNA. This effect was correlated with a change in the timing of vegetative phase change, and was primarily attributable to a change in the expression of two genes, MIR156A and MIR156C, which were found to play dominant roles in this transition. The glucose-induced repression of miR156 was dependent on the signaling activity of HEXOKINASE1. We also show that the defoliation-induced increase in miR156 levels can be suppressed by exogenous glucose. These results provide a molecular link between nutrient availability and developmental timing in plants, and suggest that sugar is a component of the leaf signal that mediates vegetative phase change.


1990 ◽  
Vol 92 (3) ◽  
pp. 770-776 ◽  
Author(s):  
Jose M. Martinez-Zapater ◽  
Chris R. Somerville

1995 ◽  
Vol 95 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Maarten Koornneef ◽  
Corrie Hanhart ◽  
Patty Loenen-Martinet ◽  
Hetty Blankestijn de Vries

Sign in / Sign up

Export Citation Format

Share Document