scholarly journals Soil Organic Carbon and Nitrogen Stocks Following Land Use Changes in a Sub-Humid Climate

2018 ◽  
Vol 8 (1) ◽  
pp. 70
Author(s):  
Birhanu Biazin ◽  
Dong-Gill Kim ◽  
Tefera Mengistu

There has been an incessant conversion of natural forests to agricultural land uses such as farmlands, grasslands and parkland agro-forestry in Africa during the last century. This study investigated changes in soil organic carbon (SOC) and total nitrogen (TN) stocks following the conversion of a natural forest to coffee-based agro-forestry, grazing grassland and well-managed maize farm in a sub-humid tropical climate of Ethiopia. Soil samples (up to 1m depth) were taken from each of these four land use types. Taking the natural forest as a baseline and with duration of 35 years since land use conversion, the total SOC and TN stocks were not significantly different (P > 0.05) among the different land use types when the entire 1m soil depth was considered. However, in the upper 0-10cm soil depth, the SOC and TN stocks were significantly higher (P < 0.05) in the natural forest than the agricultural land use types. There were different patterns of SOC and TN distributions along the soil depths for the different land use types. The SOC stocks decreased with depth in natural forest, but did not show any increasing or decreasing trends in maize farm, grazing grassland, and coffee-based agroforestry. The results of this study revealed that the negative effects of converting natural forests to agricultural land use types on SOC and TN can be prevented through appropriate land management practices in cultivated and grazing lands and use of proper agroforestry practices in a sub-humid tropical climate.

2014 ◽  
Vol 14 (2) ◽  
pp. 103-108 ◽  
Author(s):  
S Bhandari ◽  
S Bam

The study was carried out in Chovar village of Kritipur Municipality, Kathmandu to compare the soil organic carbon (SOC) of three main land use types namely forest, agricultural and barren land and to show how land use and management are among the most important determinants of SOC stock. Stratified random sampling method was used for collecting soil samples. Walkley and Black method was applied for measuring SOC. Land use and soil depth both affected SOC stock significantly. Forest soil had higher SOC stock (98 t ha-1) as compared to agricultural land with 36.6 t ha-1 and barren land with 83.6 t ha-1. Similarly, the SOC in terms of CO22-1, 79.27 to 22.02 CO2-e ha-1 and 121.11 to 80.74 CO2-1 for 0- 20 cm to 40-60 cm soil depth, respectively. Bulk density (BD) was found less in forest soil compared to other lands at all depths, which showed negative correlation with SOC. The study showed a dire need to increase current soil C stocks which can be achieved through improvements in land use and management practices, particularly through conservation and restoration of degraded forests and soils.   DOI: http://dx.doi.org/10.3126/njst.v14i2.10422   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 103-108


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 41 ◽  
Author(s):  
Guo-Ce Xu ◽  
Zhan-Bin Li ◽  
Peng Li ◽  
Ke-Xin Lu ◽  
Yun Wang

Soil organic carbon (SOC) plays an important role in maintaining and improving soil fertility and quality, in addition to mitigating climate change. Understanding SOC spatial variability is fundamental for describing soil resources and predicting SOC. In this study, SOC content and SOC mass were estimated based on a soil survey of a small watershed in the Dan River, China. The spatial heterogeneity of SOC distribution and the impacts of land-use types, elevation, slope, and aspect on SOC were also assessed. Field sampling was carried out based on a 100 m by 100 m grid system overlaid on the topographic map of the study area, and samples were collected in three soil layers to a depth of 40 cm. In total, 222 sites were sampled and 629 soil samples were collected. The results showed that classical kriging could successfully interpolate SOC content in the watershed. Contents of SOC showed strong spatial heterogeneity based on the values of the coefficient of variation and the nugget ratio, and this was attributed largely to the type of land use. The range of the semi-variograms increased with increasing soil depth. The SOC content in the soil profile decreased as soil depth increased, and there were significant (P < 0.01) differences among the three soil layers. Land use had a great impact on the SOC content. ANOVA indicated that the spatial variation of SOC contents under different land use types was significant (P < 0.05). The SOC mass of different land-use types followed the order grassland > forestland > cropland. Mean SOC masses of grassland, forestland, and cropland at a depth of 0–40 cm were 5.87, 5.61, and 5.07 kg m–2, respectively. The spatial variation of SOC masses under different land-use types was significant (P < 0.05). ANOVA also showed significant (P < 0.05) impact of aspect on SOC mass in soil at 0–40 cm. Soil bulk density played an important role in the assessment of SOC mass. In conclusion, carbon in soils in the source area of the middle Dan River would increase with conversion from agricultural land to forest or grassland.


2020 ◽  
Author(s):  
Weldesemayat Gorems Woldemariam ◽  
Nandita Ghoshal

Abstract Soil physicochemical and microbial properties can be regarded as an important tool to assess soil quality and health. Studying the soil properties under different land use types is great practical significant for land use and soil management regarding soil carbon dynamics and climate change mitigation. However, the changes in land-use types and their effects on soil physicochemical and microbial properties are largely debated and rather unclear. Four different land use types were used to study soil microbial and soil physico-chemical properties. Soil organic carbon and total nitrogen, soil microbial biomass and microbial diversity were determined by micro kjeldahl method, fumigation and extraction method and FAME GC-Ms, respectively. Among all land use pattern the highest water holding capacity (40.06±0.74%), porosity (0.539±0.011%), soil macro-aggregates (64.16±2.64%), organic carbon (0.84±0.054%), total nitrogen (0.123±0.013%), microbial biomass carbon (570.65±35.05 μg/g) and nitrogen (84.21±3.186 μg/g), basal respiration (3.64±0.064μg/g) and b-glucosidase (809.68±39.7μgμg PNP g-1 dry soil h-1) were found to be under natural forest followed by in decreasing order bamboo plantation, degraded forest and agricultural land. Significant differences were observed among the land use types with microbial biomass carbon and B-glucosidase activity. Furthermore, the correlation of analysis showed that microbial biomass, organic carbon, b-glucosidas activity, total nitrogen, moisture content, porosity, water holding capacity, soil macro aggregates were positively correlated to each other and negatively correlated with bulk density, meso and micro soil aggregates at p<0.05. The PLFA analysis showed that microbial community diversity exhibited distinct patterns among land-use types. The conversions of natural forest to other land use type, the amount of PLFA were reduced significantly. The natural forest had high microbial diversity followed by in decreasing order bamboo plantation, degraded forest and agricultural land. Among the organisms G- bacteria and fungi were showed decreasing order from natural forest, bamboo plantation, degraded forest and agricultural land. The reverse was true for G+ bacteria. The result of this study showed that soil physico-chemical and microbial properties were significantly affected by land use types. Thus bamboo based fallow has the potential for improving soil quality and properties in the short term.


Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jun Shapkota ◽  
Gandhiv Kafle

Understanding distribution of soil organic carbon (SOC) in soil profile is important for assessing soil fertility and SOC stock because it varies with soils of different vegetation and land use types. In this context, the objective of this research is that it was conducted to determine key variance in the SOC stock in three different soil layers, 0–20 cm, 20–40 cm, and 40–60 cm of different vegetation covers of Shivapuri Nagarjun National Park of Kathmandu district, Nepal. Overall field measurement was based on standard national methods. We used the dichromate digestion method to analyse SOC concentrations. The highest SOC concentration (%) was recorded as 4.87% in 0–20 cm of oak forest and lowest 0.42% in 40–60 cm of Chir pine forest. Forest types (oak, upper mixed hardwood, lower mixed hardwood, and Chir pine) had SOC stock 149.62, 104.47, 62.5, and 50.85 t/ha, respectively, up to 60 cm depth. However, these values are significantly different ( p = 0.02 ) at 5% level of significance when comparing means between the forest types. The SOC stock was decreased with increased soil depth, though not significantly different at 5% level of significance. Further study with respect to different climate, soil, forest, and land use type is recommended.


Author(s):  
B. O. Adebo ◽  
A. O. Aweto ◽  
K. Ogedengbe

Soil quality in an agroecosytem is considerably influenced by land use and management practices. Twenty two potential soil quality indicators were used to assess the effects of five different land use types (arable land, plantation, agroforestry, marginal land and native forest) on soil quality in Akufo and Atan farm settlements in Ibadan, southwestern Nigeria. A total of sixty-two fields were selected from which soil samples were taken at a depth of 0-15 cm and subjected to laboratory analysis. Majority of the evaluated physicochemical properties varied significantly among the land uses and whereas native land performed relatively better for most of the observed attributes, arable and marginal lands performed worse. Due to the moderate to strong significant correlation among the potential indicators, they were subjected to principal component analysis and only seven indicators were selected to compute the soil quality index (SQI). In both Akufo and Atan, native land had the highest SQI (0.8250 and 0.860 respectively) which was significantly different (P = .05) from all the agricultural land uses, except plantation (0.739 and 0.750 respectively). Whereas marginal field in Atan was most degraded (SQI = 0.455), it was closely followed by arable fields in both locations. This study indicates that the current agricultural land use and soil management practices in Akufo and Atan farm settlements have negatively impacted soil quality; however, the degree of degradation was strongly influenced by the concentration of soil organic carbon in the understudied land use systems. It also emphasizes the need to promote the use of sustainable management practices among agricultural land users, so as to increase soil organic carbon stock, and improve soil quality and land productivity.


2021 ◽  
Author(s):  
Getahun Haile ◽  
Mulugeta Lemenih ◽  
Fisseha Itanna ◽  
Beyene Teklu ◽  
Getachew Agegnehu

Abstract Background Aim: Land use change causes a remarkable change in soil properties. The nature of change depends on multiple factors such as soil type, type and intensity of land use, climate, and the like. This study investigated the variation in soil physicochemical properties across five common land use practices i.e., enset system, farmland, and grazing-land (closed and open), and Eucalyptus woodlots practiced on originally same soil type and comparable topographic and climatic settings.Methods: A total of 105 disturbed and undisturbed soil samples [5 treatments (land use types) *7 replications (household)* 3 soil depth layers: 0–15cm, 15–30 cm, 30–45cm] were collected for selected soil chemical and physical analyses. Standard soil analytical procedures were followed in carrying out soil analysis. To meet the assumptions of normal distribution and homogeneity of variances, soil data on available phosphors were log-transformed before statistical analysis was undertaken and reported after back transformation. Two way analysis of variable were used to investigate the effects of land use and soil depth and their interaction on soil properties and when the analysis showed a significant difference (p <0.05) among land use and soil depth men separation were made using Turkey’s pairwise comparisons.Results: There were significant differences in physical and chemical properties of soil across land use and soil depth categories. Enset system had significantly higher pH, available phosphorus (P), exchangeable potassium (K+), soil organic carbon (SOC), and total nitrogen (TN) and their stocks than other land use types. Enset fields had higher SOC (78.4%) and soil TN (75%), and SOC and TN stocks of (66%) and (58%), respectively than cereal farmland. This study had also revealed a less expected finding of higher soil organic carbon and total nitrogen under Eucalyptus wood than farm land. Soil carbon and total nitrogen stocks showed a decreasing trend of enset system> closed grazing-land > eucalyptus woodlot > open grazing-land > farmland 0-45cm.Conclusion: Overall, some land use systems (e. g. enset agroforestry) improve the soil biophysical and chemical properties, while others such as cereal production degrade the soil. Hence appropriate land and soil management intervention should be promptly adapted to mitigating the continuous loss of nutrient from the dominantly practiced cereal farm land through maintaining crop residues, manure, crop rotation and scaling up agro-forestry system.


2006 ◽  
Vol 26 (10) ◽  
pp. 3198-3203 ◽  
Author(s):  
Xinyu Zhang ◽  
Liding Chen ◽  
Bojie Fu ◽  
Qi Li ◽  
Xin Qi ◽  
...  

2021 ◽  
Author(s):  
Yawen Li ◽  
Xingwu Duan ◽  
Ya Li ◽  
Yuxiang Li ◽  
Lanlan Zhang

&lt;p&gt;Changes in land use can result in soil erosion and the loss of soil organic carbon (SOC). However, the individual contribution of different land use types on SOC variability as well as the combined impacts of land use and soil erosion are still unclear. The aims of the present study were to: (1) evaluate soil erosion and SOC contents under different land use types, (2) identify the influences of soil depth and land use on SOC content, and (3) determine the contribution of land use and soil erosion on SOC variability. We assessed the SOC and total soil nitrogen (TSN) contents under three types of land use in the dry-hot valley in southern China. Caesium-137 (&lt;sup&gt;137&lt;/sup&gt;Cs) and excess lead-210 (&lt;sup&gt;210&lt;/sup&gt;Pb&lt;sub&gt;ex&lt;/sub&gt;) contents were also measured to determine soil-erosion rates. Land use was found to significantly affect soil erosion, and erosion rates were higher in orchard land (OL) relative to farmland (FL), which is in contrast with previous study results. SOC and TSN contents varied significantly between the three land use types, with highest values in forest land (FRL) and lowest values in OL. SOC was found to decrease with decreasing soil depth; the highest rate of reduction occurred in the reference site (RS), followed by FRL and FL. The interaction between soil erosion and land use significantly impacted SOC in the soil surface layer (0&amp;#8211;12 cm); the direct impact of soil erosion accounted for 1.5% of the SOC variability, and the direct or indirect effects of land use accounted for the remainder of the variability. SOC content in deep soil was mainly affected by factors related to land uses (89.0%). This quantitative study furthers our understanding on the interactive mechanisms of land use and soil erosion on changes in soil organic carbon.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document