scholarly journals Seasonal Variations of Groundwater Chemistry in the Basement and Sedimentary Rocks of Ibadan and Lagos Areas, Southwestern Nigeria

2017 ◽  
Vol 7 (1) ◽  
pp. 55
Author(s):  
Anthony Temidayo Bolarinwa

Hydrochemical investigation of forty boreholes drilled on the basement and sedimentary rocks in Ibadan and Lagos metropolis southwestern Nigeria respectively were carried out in order to determine the portability of the groundwater in both areas and to highlight differences in their chemical characters and variations with seasons. Data obtained indicated that the groundwater in Ibadan area is mainly the Na + Ca – HCO­­3type, while that of Lagos is Na + Ca – C1 + SO4 type. The groundwater chemistry reflects weathering of sodic plagioclase feldspars in the basement rocks as well as arkosic sandstone in the sedimentary terrain. The higher chloride (ca. 124.2 mg/L) content of the Lagos water is probably due to salt-water intrusion along the coastal area. Elevated Na+ (58.5-1021.2), Fe2+ (0.3-2.8) and Mn2+ (0.04-2.34) mg/L concentrations, particularly during the dry season, adversely affect the portability of the water from both localities. Apart from making the water unsuitable for irrigation, high Na+ content is considered harmful to persons suffering from cardiac, renal and circulatory diseases. The Fe2+and Mn2+ contents could also create staining problem. It is therefore desirable to remove these elements from the borehole water prior to consumption.

Author(s):  
Talabi A. O ◽  
Ajayi C. A ◽  
Afolagboye L. O ◽  
Oyedele A. A ◽  
Ojo O. F ◽  
...  

Saltwater intrusion into the coastal aquifer has long been recognized as a major threat to groundwater quality around the world. Groundwater evaluation of salt water intrusions in Igbokoda coastal area, southwestern Nigeria was carried out employing combined Horizontal Profiling and Vertical electrical sounding. Two traverses each with two sounding points were occupied. The result from the survey revealed 4 to 5 major layers comprising the unconsolidated silty sand and sandy clay (overburden), clayey zone, consolidated sand zone, partly intruded salt water intruded sandy clay zone and salt water intruded clay zone. The curves were the complex types KQH, KHA, QH and HKH curves. The overburden has resistivity that ranged from 253 to 1316.7Ω-m, thickness that ranged from 0.2 m to 7m. The clayey zone had resistivity of 846.0 Ω-m and thickness of 4m. The consolidated sand zone had resistivity that ranged from 2848.7 to 2865.7Ω-m and thickness that ranged between 4 and 21m. The partly intruded salt water zone is characterized by resistivity that varies between 18.4Ω-m and 93.0Ω-m and thickness of about 7-25m. The salt water intruded zone is characterized by resistivity that ranges between 4.1Ω-m and 9.7Ω-m and thickness of 4-48m. The partly-salt water intruded zones and salt water intruded zone were characterized with low resistivity while the high resistivity zones of consolidated sand layer constitute fresh water bearing zone that could serve as boreholes in the study area.


Ground Water ◽  
1980 ◽  
Vol 18 (2) ◽  
pp. 147-151 ◽  
Author(s):  
B. K. Panigrahi ◽  
A. Das Gupta ◽  
A. Arbhabhirama

2016 ◽  
Author(s):  
Karin Ebert ◽  
Karin Ekstedt ◽  
Jerker Jarsjö

Abstract. Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly the effects of future sea level rise are investigated for relatively vulnerable development countries; however, a whole range of varying regions need to be considered in order to improve the understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps regarding comparatively well-suited areas in non-development countries. We study both the quantity of loss of infrastructure, cultural and natural values for the case of a two metre sea level rise of the Baltic Sea, and the effects of climate change on seawater intrusion in coastal aquifers, causing the indirect effect of salt water intrusion in wells. We conduct a multi-criteria risk analysis by using Lidar data on land elevation and GIS-vulnerability mapping, which gives formerly unimaginable precision in the application of distance and elevation parameters. We find that in case of a 2 m sea level rise, 3 % of the land area of Gotland, corresponding to 99 km2, will be inundated. The features most strongly affected are items of touristic or nature values, including camping places, shore meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion in wells will increase considerably. Some values will be irreversibly lost due to e.g. inundation of sea stacks and the passing of tipping points for sea water intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. With nature tourism being one of the main income sources of Gotland, monitoring and planning is required to meet the changes. Seeing Gotland in a global perspective, this island shows that holistic multi-feature studies of future consequences of sea level rise are required, to identify overall consequences for individual regions.


2017 ◽  
Vol 9 (3) ◽  
pp. 42
Author(s):  
Adewole John Adeola ◽  
Emmanuel Tamunobelema Tubonemi

Residual clays and laterite of economic values often occur within weathering profiles above basement rocks in tropical regions due to supergene enrichment and leaching of liable components. Previous studies in Ore area mainly on geochemistry of the basement rocks with scanty information on the weathered profiles. This study was carried out to determine the compositional characteristics of the basement rocks, the geochemical trends within the profiles above the parent rocks and the evaluation of their economic potentials.Petrographic study was carried out on thin sections of the rock samples. Elemental compositions of the rocks, clay, laterite, and top-soil were determined using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Clay mineralogy was determined using X-ray Diffraction (XRD) analysis. Chemical index of Alterations (CIA) was calculated from geochemical data.Weathering of granite and banded gneiss in Ore resulted in the formation of soil layer, which ranged 0-0.5m, laterite 1.2-3m and clayey zone 2.9-3.0m. Quartz, plagioclase feldspars, microcline, biotite and hornblende were the essential minerals in the parent rocks. Granite and banded gneiss is high SiO2 (>65%) but low in MgO (<2.0%) and CaO (<4.0%). Kaolinite (60-80%), goethite (3-12%) and microcline (4-10%) were the dominant minerals in the XRD of the weathering profiles. Traces of illite were present only in granite. The CIA was generally > 85 indicating advanced state of weathering producing lateritic soil. The lateritic profiles over granite and banded gneiss of Ore area varied with the composition of the parent rocks. The clay layer has economic potential for ceramics, fertilizer and structural wares.


2016 ◽  
Vol 8 (2) ◽  
pp. 15
Author(s):  
Adewole John Adeola ◽  
Abisola M. Oyebola

Idi-ayunre and Akure areas are part of the basement complex of southwestern Nigeria and are predominantly consisted of gneisses, granite and migmatite with some minor quartz veins and pegmatite. These rocks have been greatly weathered to form clay, laterite and soils.Chemical analysis were carried out on basement rocks and exposed profiles. The weathering profile was subjected to X ray diffraction (XRD) analysis to determine mineralogical compositions whereas Chemical Index of Alteration (CIA) was calculated from the elemental concentrated data.Weathering of basement rocks in Idi-Ayunre and Akure districts resulted in the formation of soil layer which ranged 0-0.4m, laterite layer 1.2-2.2m, and clayey zone 3.8-6.6m. Quartz, plagioclase, microcline, and biotite were the main minerals in parent rocks. Some of the primary minerals such as biotite and K-feldspar have been weathered to form kaolinite. Quartz, kaolinite and goethite formed the dominant minerals revealed by X-ray diffraction on decomposed granite sequences. The results from chemical analysis showed that Al and Fe have been enriched in weathering profiles of banded gneiss, migmatite gneiss and porphyritic granite whilst on the other hand Ca, Mg, Mn, Na, K, Ti were reported to be depleted.. Silica was relatively stable from basement to the topsoil in the profile. The CIA generally ranged between 80 - 99The lateritic profiles over banded gneiss, granite and porphyritic granite of Idi-Ayunre and Akure areas varied with the composition of the parent rocks. The thick clayey layers could be of great economic importance for the production of ceramics wares and for constructional purposes.


Sign in / Sign up

Export Citation Format

Share Document