scholarly journals The [a,b]-domination and [a,b]-total Domination of Graphs

2017 ◽  
Vol 9 (3) ◽  
pp. 38 ◽  
Author(s):  
Xiujun Zhang ◽  
Zehui Shao ◽  
Hong Yang

A subset $S$ of the vertices of $G = (V, E)$ is an $[a, b]$-set if for every vertex $v$ not in $S$ we have the number of neighbors of $v$ in $S$ is between $a$ and $b$ for non-negative integers $a$ and $b$, that is, every vertex $v$ not in $S$ is adjacent to at least $a$ but not more than $b$ vertices in $S$. The minimum cardinality of an $[a, b]$-set of $G$ is called the $[a, b]$-domination number of $G$. The $[a, b]$-domination   problem is to determine the $[a, b]$-domination number of a graph. In this paper, we show that the [2,b]-domination problem is NP-complete for $b$ at least $3$, and the [1,2]-total domination problem is NP-complete. We also determine the [1,2]-total domination and [1,2] domination numbers of toroidal grids with three rows and four rows.

2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


2021 ◽  
Vol vol. 23 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Michael A. Henning ◽  
Arti Pandey ◽  
Vikash Tripathi

A dominating set $D$ of a graph $G$ without isolated vertices is called semipaired dominating set if $D$ can be partitioned into $2$-element subsets such that the vertices in each set are at distance at most $2$. The semipaired domination number, denoted by $\gamma_{pr2}(G)$ is the minimum cardinality of a semipaired dominating set of $G$. Given a graph $G$ with no isolated vertices, the \textsc{Minimum Semipaired Domination} problem is to find a semipaired dominating set of $G$ of cardinality $\gamma_{pr2}(G)$. The decision version of the \textsc{Minimum Semipaired Domination} problem is already known to be NP-complete for chordal graphs, an important graph class. In this paper, we show that the decision version of the \textsc{Minimum Semipaired Domination} problem remains NP-complete for split graphs, a subclass of chordal graphs. On the positive side, we propose a linear-time algorithm to compute a minimum cardinality semipaired dominating set of block graphs. In addition, we prove that the \textsc{Minimum Semipaired Domination} problem is APX-complete for graphs with maximum degree $3$.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 599-607 ◽  
Author(s):  
Zehui Shao ◽  
Seyed Sheikholeslamib ◽  
Bo Wang ◽  
Pu Wu ◽  
Xiaosong Zhang

A 2-rainbow dominating function (2RDF) of a graph G is a function f : V(G) ? P({1,2}) such that for each v ? V(G) with f (v) = ? we have Uu?N(v) f (u) = {1,2}. For a 2RDF f of a graph G, the weight w(f) of f is defined as w(f)=?v?V(G)?f(v)?. The minimum weight over all 2RDFs of G is called the 2-rainbow domination number of G, which is denoted by ?r2(G). A subset S of vertices of a graph G without isolated vertices, is a total dominating set of G if every vertex in V(G) has a neighbor in S. The total domination number ?t(G) is the minimum cardinality of a total dominating set of G. Chellali, Haynes and Hedetniemi conjectured that ?t(G)? ?r2(G) [M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman and 2-rainbow domination numbers, Discrete Appl. Math. 178 (2014), 27-32.], and later Furuya confirmed the conjecture [M. Furuya, A note on total domination and 2-rainbow domination in graphs, Discrete Appl. Math. 184 (2015), 229-230.]. In this paper, we provide a constructive characterization of trees T with ?r2(T) = ?t(T).


2019 ◽  
Vol 11 (05) ◽  
pp. 1950058
Author(s):  
Fairouz Beggas ◽  
Volker Turau ◽  
Mohammed Haddad ◽  
Hamamache Kheddouci

A vertex subset [Formula: see text] of a graph [Formula: see text] is a [Formula: see text]-dominating set if each vertex of [Formula: see text] is adjacent to either one or two vertices in [Formula: see text]. The minimum cardinality of a [Formula: see text]-dominating set of [Formula: see text], denoted by [Formula: see text], is called the [Formula: see text]-domination number of [Formula: see text]. In this paper, the [Formula: see text]-domination and the [Formula: see text]-total domination numbers of the generalized Petersen graphs [Formula: see text] are determined.


Author(s):  
Bünyamin Şahin ◽  
Abdulgani Şahin

In a graph G, a vertex v is dominated by an edge e, if e is incident with v or e is incident with a vertex which is a neighbor of v. An edge-vertex dominating set D is a subset of the edge set of G such that every vertex of G is edge-vertex dominated by an edge of D. The ev-domination number equals to the number of an edge-vertex dominating set of G which has minimum cardinality and it is denoted by γev (G). We here analyze double edge-vertex domination such that a double edge-vertex dominating set D is a subset of the edge set of G, provided that all vertices in G are ev-dominated by at least two edges of D. The double ev-domination number equals to the number of an double edge-vertex dominating set of G which has minimum cardinality and it is denoted by γdev (G). We demonstrate that the enumeration of the double ev-domination number of chordal graphs is NP-complete. Moreover several results about total domination number and double ev-domination number are obtained for trees.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


Author(s):  
Jonecis Dayap ◽  
Nasrin Dehgardi ◽  
Leila Asgharsharghi ◽  
Seyed Mahmoud Sheikholeslami

For any integer [Formula: see text], a minus total [Formula: see text]-dominating function is a function [Formula: see text] satisfying [Formula: see text] for every [Formula: see text], where [Formula: see text]. The minimum of the values of [Formula: see text], taken over all minus total [Formula: see text]-dominating functions [Formula: see text], is called the minus total [Formula: see text]-domination number and is denoted by [Formula: see text]. In this paper, we initiate the study of minus total [Formula: see text]-domination in graphs, and we present different sharp bounds on [Formula: see text]. In addition, we determine the minus total [Formula: see text]-domination number of some classes of graphs. Some of our results are extensions of known properties of the minus total domination number [Formula: see text].


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


2019 ◽  
Vol 13 (04) ◽  
pp. 2050071
Author(s):  
Derya Doğan Durgun ◽  
Berna Lökçü

Let [Formula: see text] be a graph and [Formula: see text] A dominating set [Formula: see text] is a set of vertices such that each vertex of [Formula: see text] is either in [Formula: see text] or has at least one neighbor in [Formula: see text]. The minimum cardinality of such a set is called the domination number of [Formula: see text], [Formula: see text] [Formula: see text] strongly dominates [Formula: see text] and [Formula: see text] weakly dominates [Formula: see text] if (i) [Formula: see text] and (ii) [Formula: see text] A set [Formula: see text] is a strong-dominating set, shortly sd-set, (weak-dominating set, shortly wd-set) of [Formula: see text] if every vertex in [Formula: see text] is strongly (weakly) dominated by at least one vertex in [Formula: see text]. The strong (weak) domination number [Formula: see text] of [Formula: see text] is the minimum cardinality of an sd-set (wd-set). In this paper, we present weak and strong domination numbers of thorn graphs.


Sign in / Sign up

Export Citation Format

Share Document