scholarly journals Dynamic Behavior of Single-Phase Natural Convection Loops.

Author(s):  
Leon Lima ◽  
Norberto Mangiavacchi
2018 ◽  
pp. 87-99
Author(s):  
Maurizio Cumo ◽  
Antonio Naviglio

2019 ◽  
Vol 6 (4) ◽  
pp. 547-555 ◽  
Author(s):  
Xinfu Liu ◽  
Chunhua Liu ◽  
Guoqiang Liu

Abstract Dynamic behavior of coalbed methane (CBM) flow will provide the theoretical basis to optimize production performance for a given well. A mathematical model is developed to simulate flowing pressures and pressure drops of CBM column from well head to bottom hole. The measured parameters and independent variables of flow rates, flowing pressures and temperatures are involved in CBM producing process along the annulus. The developed relationships are validated against full-scale measured data in single-phase CBM wellbores. The proposed methodology can analyze the dynamic behavior in CBM reservoir and process of CBM flow with an overall accuracy of 2%. The calculating process of flowing pressures involves friction factor with variable Reynolds number and CBM temperature and compressibility factor with gravitational gradients. The results showed that the effect of flowing pressure on CBM column was more obvious than that on CBM and water column accompanied by an increase of dynamic water level. The ratios of flowing pressure on increment of CBM column to the whole column increased with the declined flow rates of water column. Bottom-hole pressure declined with the decreased flowing pressure of CBM column along the annulus. It will lead to the results of the increased pressure drop of CBM column and CBM flow rate in single-phase CBM wellbores.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinlu Yan ◽  
Songhang Zhang ◽  
Shuheng Tang ◽  
Zhongcheng Li ◽  
Qian Zhang ◽  
...  

AbstractThe development of coalbed methane (CBM) is not only affected by geological factors, but also by engineering factors, such as artificial fracturing and drainage strategies. In order to optimize drainage strategies for wells in unique geological conditions, the characteristics of different stages of CBM production are accurately described based on the dynamic behavior of the pressure drop funnel and coal reservoir permeability. Effective depressurization is achieved by extending the pressure propagation radius and gas desorption radius to the well-controlled boundary, in the single-phase water flow stage and the gas–water flow stage, respectively, with inter-well pressure interference accomplished in the single-phase gas flow stage. A mathematic model was developed to quantitatively optimize drainage strategies for each stage, with the maximum bottom hole flow pressure (BHFP) drop rate and the maximum daily gas production calculated to guide the optimization of CBM production. Finally, six wells from the Shizhuangnan Block in the southern Qinshui Basin of China were used as a case study to verify the practical applicability of the model. Calculation results clearly indicate the differences in production characteristics as a result of different drainage strategies. Overall, if the applied drainage strategies do not achieve optimal drainage results, the coal reservoir could be irreversibly damaged, which is not conducive to expansion of the pressure drop funnel. Therefore, this optimization model provides valuable guidance for rational CBM drainage strategy development and efficient CBM production.


2003 ◽  
Author(s):  
Jin-Ki Ham ◽  
Young-Ki Kim ◽  
Jin-Soo Kim ◽  
Seok-Hyun Song

Numerical prediction and experimental verification of the temperature rise for a single-phase and a three-phase gas-insulated bus bar with current flow are investigated. Various heat generation rates possibly produced in the gas-insulated bus bar are calculated. To estimate the power loss caused by eddy current, the magnetic field analysis is carried out. The heat balance calculation solving the differential form of an energy balance equation with empirical relations is conducted by using the 5th order Runge-Kutta method. The various cases representing different geometries and current values are investigated by conducting the heat balance calculation. Three-dimensional numerical flow field analysis using finite volume method is performed for the different type of the bus bars. From the flow field analysis based on laminar natural convection, the temperature gradient in the current flowing direction caused by contact heat source is found for both single-phase and three-phase bus bars. In the experiments, temperature rises in each of conductor, contact part, and external tank are measured for a full-scale gas-insulated bus bar. The comparisons of the predicted values of the heat balance calculation and the numerical analyses to results of the experiments are made. From the comparisons, it is concluded that the temperature rise of a bus bar can be predicted quite well by performing laminar natural convection flow analyses.


Author(s):  
Si-pu Guo ◽  
Zhao-zan Feng ◽  
Ze-cong Fang ◽  
Wei Li ◽  
Jin-liang Xu ◽  
...  

Nanofluids are colloidal suspensions of nano-scale particles in water, or other base fluids. In this paper, the effect of natural convection on laminar flow of nanofluids in a horizontal tube has been addressed. The obtained experimental data could not be reconciled with existing correlations over a wide range of Prandtl number under laminar mixed convection. Three improved correlations have been derived by using single-phase fluid approach. These correlations fit our data to within ± 10 % and also agree with the data in literature quite well. Such results verify that nanofluids can be treated as a homogeneous mixture with effective thermophysical properties. Utimately, the new correlations have grasped the essence of natural convection and can reduce to both normal forced convection and pure natural convection equations at limiting cases.


Sign in / Sign up

Export Citation Format

Share Document