scholarly journals The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind

2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Chi Kong Chyong ◽  
Bowei Guo ◽  
David Newbery
Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 111-123
Author(s):  
Bowen He ◽  
Ke J. Ding

The growing impact of CO2 and other greenhouse-gas (GHG) emissions on the socio-climate system in the Western Cape, South Africa, urgently calls for the need for better climate adaptation and emissions-reduction strategies. While the consensus has been that there is a strong correlation between CO2 emissions and the global climate system, few studies on climate change in the Western Cape have quantified the impact of climate change on local climate metrics such as precipitation and evaporation under different future climate scenarios. The present study investigates three different CO2 emissions scenarios: Representative Concentration Pathway (RCP) 2.6, RCP 4.5, and RCP 8.5, from moderate to severe, respectively. Specifically, we used climate metrics including precipitation, daily mean and maximum near-surface air temperature, and evaporation to evaluate the future climate in Western Cape under each different RCP climate scenario. The projected simulation results reveal that temperature-related metrics are more sensitive to CO2 emissions than water-related metrics. Districts closer to the south coast are more resilient to severer GHG emissions scenarios compared to inland areas regarding temperature and rainfall; however, coastal regions are more likely to suffer from severe droughts such as the “Day-Zero” water crisis. As a result, a robust drying signal across the Western Cape region is likely to be seen in the second half of the 21st century, especially under the scenario of RCP 8.5 (business as usual) without efficient emissions reduction policies.


2021 ◽  
Author(s):  
Anna Karion ◽  
Vineet Yadav ◽  
Subhomoy Ghosh ◽  
Kimberly Mueller ◽  
Geoffrey Roest ◽  
...  

<div> <div> <div> <p>Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. Our analysis uses three lines of evidence with increasing model dependency. The first detects the timing of emissions declines using the variability in atmospheric CO2 observations, the second assesses the continuation of reduced emissions using CO2 enhancements, and the third employs an inverse model to estimate the relative emissions changes in 2020 compared to 2018 and 2019. Emissions declines began in mid-March in both cities. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales, a proxy for vehicular emissions. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines, while the remainder of the emissions reduction remains unexplained. To help diagnose such observed changes in emissions, more reliable, publicly available emission information from all significant sectors needs to be made available. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing urban emissions patterns that can empower cities to course-correct mitigation activities more efficiently.</p> </div> </div> </div>


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3115
Author(s):  
Akhil Kunche ◽  
Bożena Mielczarek

Cement manufacturing is an emission-intensive process. The cement industry is responsible for 8% of the global CO2 emissions, and produces a ton of cement uses up to 102 kWh of electrical energy, leading to a significant amount of indirect emissions depending on the emission intensity of the electricity source. Captive power generation can be potentially utilised as a mitigation approach to reduce emissions and as well as expenditure on electricity tariffs. In this study, a system dynamic simulation model is built to evaluate the impact of captive power generation on a cement plant’s net emissions and expenditure through electricity use, under different scenarios for carbon-tax, grid emission factor, and electricity tariffs. The model is then utilised to simulate a reference plant under realistic scenarios designed based on the conditions in Germany and United Arab Emirates. Furthermore, the model is utilised to calculate the payback period of investments on captive power plants under different carbon tax scenarios. The study concludes that a carbon tax policy on emissions through electricity utilisation could have an impact on incentivising the use of captive power generation and would lead to fewer emissions and expenditure during the cement plant’s lifetime.


Pomorstvo ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 128-140
Author(s):  
Piotr Kamil Korlak

Existing and future IMO restrictions on emission of harmful substances contained in exhaust gas have introduced an obligation to implement technical solutions to reduce NOX, SOX and CO2 emissions. Reduction in NOX and SOX emissions has been achieved by systems (i.e. SCR and EGR) ensuring Tier III-compliant exhaust gas composition. SCR and EGR systems have also affected the amount of exhaust gas waste heat. Therefore reduction in CO2 emissions has mostly been dependent on available amount of exhaust gas waste heat to produce electricity using waste heat recovery generator unit instead of medium-speed diesel generating set. Comparative analysis of amounts of exhaust gas waste heat in LNG and MGO modes under ISO ambient conditions has been carried out with particular emphasis on the impact of different variants of SCR and EGR systems. Formulae to estimate the amounts of exhaust gas waste heat have been determined using least squares method.


2021 ◽  
Vol 13 (16) ◽  
pp. 9312 ◽  
Author(s):  
Muhammad Jawad Sajid ◽  
Ernesto D. R. Santibanez Gonzalez

COVID-19’s demand shocks have a significant impact on global CO2 emissions. However, few studies have estimated the impact of COVID-19’s direct and indirect demand shocks on sectoral CO2 emissions and linkages. This study’s goal is to estimate the impact of COVID-19’s direct and indirect demand shocks on the CO2 emissions of the Asia-Pacific countries of Bangladesh, China, India, Indonesia, and Pakistan (BCIIP). The study, based on the Asian Development Bank’s COVID-19 economic impact scenarios, estimated the impact of direct and indirect demand shocks on CO2 releases using input–output and hypothetical extraction methods. In the no COVID-19 scenario, China emitted the most CO2 (11 billion tons (Bt)), followed by India (2 Bt), Indonesia (0.5 Bt), Pakistan (0.2 Bt), and Bangladesh (0.08 Bt). For BCIIP nations, total demand shocks forced a 1–2% reduction in CO2 emissions under a worst-case scenario. Given BCIIP’s current economic recovery, a best or moderate scenario with a negative impact of less than 1% is more likely in coming years. Direct demand shocks, with a negative 85–63% share, caused most of the CO2 emissions decrease. The downstream indirect demand had only a 15–37% contribution to CO2 emissions reduction. Our study also discusses policy implications.


2021 ◽  
Author(s):  
Duo Cui ◽  
Zhu Liu ◽  
CunCun Duan ◽  
Zhu Deng ◽  
Xiangzheng Deng ◽  
...  

Abstract. Tracking China's national and regional CO2 emission trends is becoming ever more crucial. The country recently pledged to achieve ambitious emissions reduction targets, however, high-resolution datasets for provincial level CO2 emissions in China are still lacking. This study provides daily CO2 emission datasets for China's 31 provinces, including for the first time, the province of Tibet. The inventory covers the emissions from three industrial sectors (power, industry and ground transport) during 2019 to 2020, with its temporal resolution at a daily level. In addition, the variations in CO2 emissions for seasonal, weekly and holiday periods have been uncovered at a provincial level for the first time. This new data was added to further analyze the impact that weekends and holidays have on China's CO2 emissions. Over weekend periods, carbon emissions are shown to reduce by around 3%. Spring Festival meanwhile, has the greatest impact on the reduction of China's CO2 emissions. This detailed and time-related inventory will facilitate a more local and adaptive management of China’s CO2 emissions during both the COVID-19 pandemic’s recovery and the ongoing energy transition. The data are archived at https://doi.org/10.5281/zenodo.4730175 (Cui et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document