scholarly journals Climate change impacts on drought-prone forests in western Canada

2005 ◽  
Vol 81 (5) ◽  
pp. 675-682 ◽  
Author(s):  
E.H. (Ted) Hogg ◽  
Pierre Y Bernier

From a climate change perspective, much of the recent international focus on forests has been on their role in taking up carbon dioxide (CO2) from the atmosphere. The question of climate change impacts on forest productivity is also emerging as a critical issue, especially in drought-prone regions such as the western Canadian interior. Because of the complexity of interacting factors, there is uncertainty even in predicting the direction of change in the productivity of Canada's forests as a whole over the next century. In the most climatically vulnerable regions, however, successful adaptation may require more innovative approaches to forest management, coupled with an enhanced capacity for early detection of large-scale changes in forest productivity, dieback and regeneration. Key words: climate change, boreal forest, productivity, drought, impacts, adaptation

2007 ◽  
Vol 83 (6) ◽  
pp. 806-809 ◽  
Author(s):  
A E Ogden

This paper provides an overview of a project that synthesized available information on climate change for the southwest Yukon. This was done as a first step in a longer-term process of evaluating climate impacts, assessing risks to ecosystem and community values, and developing scenarios for adaptation. The overall intent of the work was to support informed forest management decision-making for the Champagne-Aishihik Traditional Territory (CATT) in the light of climate change. The objectives of this stage of the project were to: compile and improve access to existing baseline information needed to support informed management decisions in the face of climate change; to make this information available using several communication tools for various target audiences; and to create an opportunity for scientists, government; and local residents to share observations and concerns on climate change as related to the management of forest resources within the study region. Key words: climate change, impacts, adaptation, sustainable forest management, southwest Yukon, Dendroctonus rufipennis, spruce bark beetle, Yukon Territory, champagne and Aishihik Traditional Territory


2005 ◽  
Vol 81 (5) ◽  
pp. 669-674 ◽  
Author(s):  
Brent Sohngen ◽  
Roger Sedjo

This paper examines potential climate change impacts in North American timber markets. The results indicate that climate change could increase productivity in forests in North America, increase productivity in forests globally, and reduce timber prices. North American consumers generally will gain from the potential changes, but producers could lose welfare. If dieback resulting from additional forest fires, increased pest infestation, or storm damage increases appreciably and has market effects, consumers will gain less and producers will lose more than if climate change simply increases the annual flow of timber products by raising forest productivity. Annual producers' surplus losses from climate change in the North American timber sector are estimated to range from $1.4 – $2.1 billion per year on average over the next century, with the higher number resulting from potential large-scale dieback. Within North America, existing studies suggest that producers in northern regions are less susceptible to climate change impacts than producers in southern regions because many climate and ecological models suggest that climates become dryer in the U.S. South. Key words: climate change, impact analysis, timber markets, forest ecosystems


2005 ◽  
Vol 81 (5) ◽  
pp. 691-695 ◽  
Author(s):  
David L Spittlehouse

Future climate change will affect society's ability to use forest resources. We take account of climate in forest management and this will help us adapt to the effects of climate change on forests. However, society will have to adjust to how forests adapt by changing expectations for the use of forest resources because management can only influence the timing and direction of forest adaptation at selected locations. There will be benefits as well as loses and an important component of adaptation will be balancing values. Adaptation options to respond to impacts on the timber supply in Canada for the next 50 to 100 years are limited mainly to forest protection and wood utilisation because these forests are already in the ground. Adaptation through reforestation will focus on commercial tree species. It is important to start developing adaptation strategies now. These include assessing forest vulnerability to climate change, revising expectations of forest use, determining research and educational needs, development of forest policies to facilitate adaptation, and determining when to implement responses. Government agencies should take the lead in creating an environment to foster adaptation in forestry and in developing the necessary information required to respond. Key words: climate change, impacts, adaptation, vulnerability, forests, ecosystems, risk management


2021 ◽  
Author(s):  
Carl-Fredrik Johannesson ◽  
Klaus Steenberg Larsen ◽  
Brunon Malicki ◽  
Jenni Nordén

<p>Boreal forests are among the most carbon (C) rich forest types in the world and store up to 80% of its total C in the soil. Forest soil C development under climate change has received increased scientific attention yet large uncertainties remain, not least in terms of magnitude and direction of soil C responses. As with climate change, large uncertainties remain in terms of the effects of forest management on soil C sequestration and storage. Nonetheless, it is clear that forest management measures can have far reaching effects on ecosystem functioning and soil conditions. For example, clear cutting is a widely undertaken felling method in Scandinavia which profoundly affects the forest ecosystem and its functioning, including the soil. Nitrogen (N) fertilization is another common practice in Scandinavia which, despite uncertainties regarding effects on soil C dynamics, is being promoted as a climate change mitigation tool. A more novel practice of biochar addition to soils has been shown to have positive effects on soil conditions, including soil C storage, but studies on biochar in the context of forests are few.</p><p>In the face of climate change, the ForBioFunCtioN project is dedicated to investigating the response of boreal forest soil CO<sub>2</sub> and CH<sub>4</sub> fluxes to experimentally increased temperatures and increased precipitation – climatic changes in line with projections over Norway – within a forest management context. The experiment is set in a Norwegian spruce-dominated bilberry chronosequence, including a clear-cut site, a middle-aged thinned stand, a mature stand and an old unmanaged stand. Warming, simulated increased precipitation, N fertilizer and biochar additions will be applied on experimental plots in an additive manner that allows for disentangling the effects of individual parameters from interaction effects. Flux measurements will be undertaken at high temporal resolution using the state-of-the-art LI-7810 Trace Gas Analyzer (©LI-COR Biosciences). The presentation will show the experimental setup and first measurements from the large-scale experiment.</p>


2005 ◽  
Vol 81 (5) ◽  
pp. 653-654 ◽  
Author(s):  
Greg A McKinnon ◽  
Shelley L Webber

Key words: forests, climate change, vulnerability, adaptation, sustainable forest management


Author(s):  
C R McInnes

The prospect of engineering the Earth's climate (geoengineering) raises a multitude of issues associated with climatology, engineering on macroscopic scales, and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this article a simple climate model will be used to estimate requirements for engineering the Earth's climate, principally using space-based geoengineering. Active cooling of the climate to mitigate anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth's atmosphere is considered. This representative scenario will allow the scale of the engineering challenge to be determined. It will be argued that simple occulting discs at the interior Lagrange point may represent a less complex solution than concepts for highly engineered refracting discs proposed recently. While engineering on macroscopic scales can appear formidable, emerging capabilities may allow such ventures to be seriously considered in the long term. This article is not an exhaustive review of geoengineering, but aims to provide a foretaste of the future opportunities, challenges, and requirements for space-based geoengineering ventures.


2009 ◽  
Vol 31 (1) ◽  
pp. 1 ◽  
Author(s):  
G. M. McKeon ◽  
G. S. Stone ◽  
J. I. Syktus ◽  
J. O. Carter ◽  
N. R. Flood ◽  
...  

Grazing is a major land use in Australia’s rangelands. The ‘safe’ livestock carrying capacity (LCC) required to maintain resource condition is strongly dependent on climate. We reviewed: the approaches for quantifying LCC; current trends in climate and their effect on components of the grazing system; implications of the ‘best estimates’ of climate change projections for LCC; the agreement and disagreement between the current trends and projections; and the adequacy of current models of forage production in simulating the impact of climate change. We report the results of a sensitivity study of climate change impacts on forage production across the rangelands, and we discuss the more general issues facing grazing enterprises associated with climate change, such as ‘known uncertainties’ and adaptation responses (e.g. use of climate risk assessment). We found that the method of quantifying LCC from a combination of estimates (simulations) of long-term (>30 years) forage production and successful grazier experience has been well tested across northern Australian rangelands with different climatic regions. This methodology provides a sound base for the assessment of climate change impacts, even though there are many identified gaps in knowledge. The evaluation of current trends indicated substantial differences in the trends of annual rainfall (and simulated forage production) across Australian rangelands with general increases in most of western Australian rangelands (including northern regions of the Northern Territory) and decreases in eastern Australian rangelands and south-western Western Australia. Some of the projected changes in rainfall and temperature appear small compared with year-to-year variability. Nevertheless, the impacts on rangeland production systems are expected to be important in terms of required managerial and enterprise adaptations. Some important aspects of climate systems science remain unresolved, and we suggest that a risk-averse approach to rangeland management, based on the ‘best estimate’ projections, in combination with appropriate responses to short-term (1–5 years) climate variability, would reduce the risk of resource degradation. Climate change projections – including changes in rainfall, temperature, carbon dioxide and other climatic variables – if realised, are likely to affect forage and animal production, and ecosystem functioning. The major known uncertainties in quantifying climate change impacts are: (i) carbon dioxide effects on forage production, quality, nutrient cycling and competition between life forms (e.g. grass, shrubs and trees); and (ii) the future role of woody plants including effects of fire, climatic extremes and management for carbon storage. In a simple example of simulating climate change impacts on forage production, we found that increased temperature (3°C) was likely to result in a decrease in forage production for most rangeland locations (e.g. –21% calculated as an unweighted average across 90 locations). The increase in temperature exacerbated or reduced the effects of a 10% decrease/increase in rainfall respectively (–33% or –9%). Estimates of the beneficial effects of increased CO2 (from 350 to 650 ppm) on forage production and water use efficiency indicated enhanced forage production (+26%). The increase was approximately equivalent to the decline in forage production associated with a 3°C temperature increase. The large magnitude of these opposing effects emphasised the importance of the uncertainties in quantifying the impacts of these components of climate change. We anticipate decreases in LCC given that the ‘best estimate’ of climate change across the rangelands is for a decline (or little change) in rainfall and an increase in temperature. As a consequence, we suggest that public policy have regard for: the implications for livestock enterprises, regional communities, potential resource damage, animal welfare and human distress. However, the capability to quantify these warnings is yet to be developed and this important task remains as a challenge for rangeland and climate systems science.


Sign in / Sign up

Export Citation Format

Share Document