scholarly journals The geophysical signature of Oyut deposits, Oyu Tolgoi, Mongolia

2021 ◽  
Vol 26 (52) ◽  
pp. 80-96
Author(s):  
Erdene Batbaatar ◽  
Munkhjargal Todbileg ◽  
Otgonbayar Sansar ◽  
Baatar Bataa

The well-known Oyu Tolgoi Cu-Au group deposits can be divided into three main deposits: Hugo Dummett deposit (Hugo North and Hugo South), Oyut deposits (South Oyu, Southwest Oyu and Central Oyu), and Heruga deposit in the south. These deposits sit along 26 km long, north-northeast trending belt termed as the Oyu Tolgoi trend. This paper reviews investigations on geophysical signatures of the South Oyu, Southwest Oyu and Central Oyu deposits and compares geophysical models of the mineral deposits with their lithology, alteration, mineralization, and structures. A variety of datasets including induced polarization, ground magnetic, gravity survey are used in the study and generated inversion products of ground magnetic and gravity data with integrated interpretation. Typical responses from the Oyut deposits are: up to 0.1 mGal positive gravity anomaly above background, 100–200 nT low or high magnetic anomaly compared to background depending on the geological situations, and from 12 mV/V to 30 mV/V chargeability anomalies and low resistivity signatures from 100 ohm.m to 400 ohm.m. The interpreted geological-geophysical models of porphyry Cu-Au deposits presents in this study have emphasis on integrated interpretation of geophysical techniques, and inversions of gravity and magnetic data in gold rich porphyry copper system.

Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1514-1526 ◽  
Author(s):  
Alvin K. Benson ◽  
Andrew R. Floyd

Gravity and magnetic data were collected in the Mosida Hills, Utah County, Utah, at over 1100 stations covering an area of approximately 58 km2 (150 mi2) in order to help define the subsurface geology and assess potential geological hazards for urban planning in an area where the population is rapidly increasing. In addition, potential hydrocarbon traps and mineral ore bodies may be associated with some of the interpreted subsurface structures. Standard processing techniques were applied to the data to remove known variations unrelated to the geology of the area. The residual data were used to generate gravity and magnetic contour maps, isometric projections, profiles, and subsurface models. Ambiguities in the geological models were reduced by (1) incorporating data from previous geophysical surveys, surface mapping, and aeromagnetic data, (2) integrating the gravity and magnetic data from our survey, and (3) correlating the modeled cross sections. Gravity highs and coincident magnetic highs delineate mafic lava flows, gravity lows and magnetic highs reflect tuffs, and gravity highs and magnetic lows spatially correlate with carbonates. These correlations help identify the subsurface geology and lead to new insights about the formation of the associated valleys. At least eight new faults (or fault segments) were identified from the gravity data, whereas the magnetic data indicate the existence of at least three concealed and/or poorly exposed igneous bodies, as well as a large ash‐flow tuff. The presence of low‐angle faults suggests that folding or downwarping, in addition to faulting, played a role in the formation of the valleys in the Mosida Hills area. The interpreted location and nature of concealed faults and volcanic flows in the Mosida Hills area are being used by policy makers to help develop mitigation procedures to protect life and property.


Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).


2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.


1970 ◽  
Vol 7 (3) ◽  
pp. 858-868 ◽  
Author(s):  
R. H. Wallis

The striking 'fit' of aeromagnetic and gravity data from the Precambrian of northwest Saskatchewan, combined with known and nearby analogous, geological relationships, suggests the presence of a northeast-trending belt, 250 × 20 miles (400 × 30 km), of early Proterozoic (?) metasedimentary rocks, probably magnetite-bearing meta-arkoses. This structural–sedimentary unit might have economic possibilities analogous to other northeast-striking, Precambrian, lower Proterozoic (?), metasedimentary belts of northern Saskatchewan, the Virgin River Belt, and the Wollaston Trend.


Geophysics ◽  
1961 ◽  
Vol 26 (1) ◽  
pp. 40-44 ◽  
Author(s):  
L. S. Morrison ◽  
Robert Watson

With the advent of electronic computers a revolution in data handling has been brought about. As yet few people outside of scientific research or accounting fields are familiar enough with these computers to know how they can be applied in their particular type of work. Electronic computers consist of three basic elements: an operations register, a digital computer and a memory unit. The memory unit retains information in numeric form in locations that are identified by a coordinate system. Data stored in memory may be retrieved and processed in the digital computer and the results of the computation may be stored for later use. Computations are carried out in the binary or two‐digit number system. The operations register controls the operation of the digital computer and the memory unit and acts as a link between the intent of the programmer and the internal operation of the system. An object, given the proper code numbers describing its shape, size, color, etc., can be identified from other objects by comparison of code numbers. The speed and ability of electronic computers to compare and identify makesn possible the solution of very exacting problems that otherwise would be humanly next to impossible from time considerations. Electronic computers have been used in geophysical exploration to compute and contour derivative maps of gravity and magnetic data. They have been used to reduce gravity data to datum, compute interval and average velocities from velocity profile data and have been used to solve many non‐recurring problems.


Geophysics ◽  
2020 ◽  
pp. 1-76
Author(s):  
Mehrdad Darijani ◽  
Colin G. Farquharson ◽  
Peter G. Lelièvre

Magnetic and gravity data are used in the early stages of exploration for uranium deposits in the Athabasca Basin of Canada, just as for many other mineral exploration scenarios. Uranium mineralization in the Athabasca Basin is located where faults in the basement intersect the unconformity between the basement and the overlying sandstones. Both the gravity and magnetic data are dominated by signatures from the basement and an overburden of glacial sediments. The gravity and magnetic data are effective at mapping the basement geology. Any subtle gravity signal from the mineralization related to the formation of the uranium deposits is masked by the signal from the variable thickness overburden. 3D joint inversion of gravity and magnetic data, first without and then with constraints, is evaluated as a means of better determining the structure of the three main lithologies (overburden, sandstones, basement) in the Athabasca Basin. A significant amount of physical property information is available for the main rock units (and overburden), which makes the use of the compositional approach to joint inversion appropriate. For the joint inversion, the fuzzy c-mean clustering method is used. Results from representative synthetic examples show that the joint inversions can construct the overburden and basement structures better than the independent inversions of gravity and magnetic data. Furthermore, constrained joint inversion allows delineation of all three major layers in the area. The same inversion strategies were then applied to the real airborne gravity and magnetic data from the McArthur River area in the eastern Athabasca Basin. The results obtained demonstrate the capabilities of joint inversion for real-life situations.


1989 ◽  
Vol 20 (2) ◽  
pp. 303
Author(s):  
B.M. Haines ◽  
B.A. McConachie

The Carpentaria Basin in the west/central portion of Cape York Peninsula is largely unexplored for petroleum, and there is an apparent ambiguity in the basement depths interpreted from gravity and aeromagnetic data. It was decided that deep seismic refraction surveys at a variety of sites should prove cost-effective in defining the geologic model for the basin. Of particular interest is the possible existence of a north-south trending elongate infrabasin inferred qualitatively from a strong gravity low shown Figure 1. Results of the refraction work indicate that the magnetic and gravity data suggestive of the presence of an infrabasin are probably related to lithological variations within basement. Furthermore, it is improbable that the thickness of the sedimentary pile anywhere within the area of investigation exceeds 1100 metres. Basement velocities are high, from 5500m/sec to 6200m/sec, typical of fresh igneous and/or metamorphic lithologies. Carbonates could not be totally excluded on the basis of these velocities alone, but are improbable in view of the gravity and magnetic data. At some locations there is evidence for the presence of an intermediate section of higher velocity within the sedimentary sequence. This is thought to be quite thin, and possibly representative of the Toolebuc Formation.


Sign in / Sign up

Export Citation Format

Share Document