scholarly journals Preparation and characterization of activated carbons from different kinds of coal

Author(s):  
Batkhishig Damdin ◽  
Purevsuren Barnasan ◽  
Chung-Jun Lin ◽  
Batbileg Sanjaa ◽  
Ariunaa Alyeksandr

Initial coal was purified in heavy liquid with a density 1.3 cm3 of ZnCl2 solution and purified coal was carbonized and the initial coal samples of each deposits were purified by pyrolysis. Thus, the yield of pyrolysis hard residue in the enriched sample was slightly higher than in the hard residue of initial coal. Therefore, pyrolysis hard residue of purified coal (carbonized sample) was activated at 800°C for 2 hours by preheated water steam. Activated carbons (ACs) and non-activated and non-carbonized coal from Baganuur, Ereen and Nariin Sukhait deposits were technically analyzed and their iodine number, BET surface area, pore volume and adsorption of methylene blue (MB) were determined. When these results were compared, these indicators increased 5-17 times in the Baganuur activated carbon (BN-AC), Ereen activated carbon (E-AC) and Nariin Sukhait activated carbon (NS-AC) as compared to inactivated coal.

2011 ◽  
Vol 704-705 ◽  
pp. 517-522 ◽  
Author(s):  
Xiao Juan Jin ◽  
Zhi Ming Yu ◽  
Gao Jiang Yan ◽  
Wu Yu

Activated carbons were prepared through chemical activation of lignin from straw pulping precursor using potassium carbonate as the chemical agent. Effects of activated temperature, K2CO3/lignin ratio and the activated time on the yield, Iodine number of activated carbon were investigated. Experimental results indicated that the optimum conditions were as follow: activated temperature 800°C, K3CO3(40% concentration) /lignin ratio 5: l, activated time 50min. These conditions allowed us to obtain a BET surface area of 1104 m2/g, including the external or non-microporous surface of 417 m2/g,Amount of methylene blue adsorption, Iodine number and the yield of activated carbon prepared under optimum conditions were 10.6mL/0.lg,1310 mg/g and 19.75%, respectively.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. G. Herawan ◽  
M. S. Hadi ◽  
Md. R. Ayob ◽  
A. Putra

Activated carbons can be produced from different precursors, including coals of different ranks, and lignocellulosic materials, by physical or chemical activation processes. The objective of this paper is to characterize oil-palm shells, as a biomass byproduct from palm-oil mills which were converted into activated carbons by nitrogen pyrolysis followed by CO2activation. The effects of no holding peak pyrolysis temperature on the physical characteristics of the activated carbons are studied. The BET surface area of the activated carbon is investigated using N2adsorption at 77 K with selected temperatures of 500, 600, and 700°C. These pyrolysis conditions for preparing the activated carbons are found to yield higher BET surface area at a pyrolysis temperature of 700°C compared to selected commercial activated carbon. The activated carbons thus result in well-developed porosities and predominantly microporosities. By using this activation method, significant improvement can be obtained in the surface characteristics of the activated carbons. Thus this study shows that the preparation time can be shortened while better results of activated carbon can be produced.


2010 ◽  
Vol 44-47 ◽  
pp. 2562-2568
Author(s):  
Wu Yu ◽  
Ming Yu Zhi ◽  
Xiao Juan Jin

Activated carbons were prepared from waste particle board (WPB) by K2CO3 activation. The effects of different parameters, such as chemical/WPB ratio, activation time and activation temperature on yield, the methylene blue adsorption, Iodine number of activated carbon were investigated. The optimum conditions were determined by the method of factor analysis and the orthogonal design as follows: activation temperature 900°C, K2CO3 (50% concentration)/ WPB 4.0, activation time 60 min. Amount of methylene blue adsorption, Iodine number, phenol adsorption, BET surface area and the yield of activated carbon prepared under optimum conditions were 82.5mg/g, 1234mg/g, 185mg/g, 1026m2/g and 30.4%, respectively.


2016 ◽  
Vol 11 (1) ◽  
pp. 128-139 ◽  
Author(s):  
Rinita Rajbhandari Joshi

Activated carbon was prepared from Lapsi (Choerospondias axillaries ) seed stone by chemical activation method using ZnCl2. The effect of experimental variables; ZnCl2 ratio, temperature and carbonization time on the quality of the activated carbon were systematically invested by determining the carbon yield, iodine number, methylene blue number, surface area and pore volume. Lapsi seed stone powder (LSP) of particle size < 300 μm was used to prepare activated carbon under N2 atmosphere. An increase in ZnCl2 ratio in general increased the iodine number and methylene blue number, but on increasing zinc chloride above 50 percentages, iodine and methylene blue number increased only marginally. An increase in carbonization temperature increases the iodine number, methylene blue number, and surface area and pore volume. Increase in carbonization time from 3 hour to 4 hour increases iodine number and methylene blue number and thereafter the increase in iodine number and methylene blue number is gradual. Regarding the carbon yield, it decreases with the ZnCl2 ratio above 50 percent, and the yield also decreases with increase in temperature and carbonization time. Therefore the optimum conditions for the preparation of activated carbon from Lapsi seed stone using ZnCl2 as follows: carbonization temperature of 400°C, zinc chloride ratio as LSP:ZnCl2 equals 1:1, and carbonization time of 4 hour. This resulted an activated carbon with 791 iodine number, 364 methylene blue number, 1167 surface area and 0.65 pore volume.Journal of the Institute of Engineering, 2015, 11(1): 128-139


Author(s):  
Mustafa Kaya ◽  
Ömer Şahin ◽  
Cafer Saka

AbstractIn this study, low cost activated carbon was prepared from the pistachio shell by chemical activation with zinc chloride (ZnCl2). The prepared activated carbon was characterized by thermogravimetry (TG) and differential thermal gravimetry (DTG), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) surface area analyses. Results showed that the activation temperature and impregnation ratio have significant effect on the iodine number of the prepared activated carbon. The optimum conditions for preparing the activated carbon having the highest surface area were found to be an activation temperature of 700 °C, soaking time of 24 h and ZnCl2/ pistachio shell ratio of 50 %. The results showed that the BET surface area, total pore volume, iodine number and methylene blue (MB) number of activated carbon prepared under the optimum conditions were 1108 m2/g, 0.39 cm3/g, 1051 mg/g, 98.48 mg/g, respectively.


2017 ◽  
Vol 19 (4) ◽  
pp. 87-93 ◽  
Author(s):  
Diana P. Vargas ◽  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

Abstract The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.


2020 ◽  
Vol 41 (1) ◽  
pp. 74-79
Author(s):  
Sahira Joshi ◽  
Bishnu K.C.

Series of activated carbons (ACs) have been prepared from Sugarcane bagasse powder by ZnCl2 activation at various impregnation ratios of ZnCl2 to Sugarcane bagasse powder of 0.25:1, 0.5:1, 1:1 and 2:1 by weight. Characteristics of the activated carbons (ACs) were determined by iodine number, methylene blue number, surface area, scanning electron microscopy (SEM) and x-ray diffraction. Iodine number (IN) indicated that, microporosity of the AC were increased with increasing impregnation ratio ZnCl2 to Sugarcane bagasse upto 1:1 then started to decrease. However, mesoporosity as well as surface area was increased progressively. The maximum value of iodine number (868 mg/g) was achieved in the AC prepared at impregnation ratio of ZnCl2 to sugarcane bagasse 1:1. SEM micrographs also show the presence of well developed pores on its surface of AC-1. The broad peaks in the XRD patterns indicated that, all the ACs is amorphous materials. From results, it is concluded that ZnCl2 concentration used in impregnation is effective for development of porosity and surface area of the AC prepared from Sugarcane bagasse.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


Sign in / Sign up

Export Citation Format

Share Document