A Multifunction Unit for Matrix, Vector and Elementary Functions Computation in Mobile GPU Shaders

2019 ◽  
Vol 19 (1) ◽  
pp. 97-108
Author(s):  
Byeong-Gyu Nam
2021 ◽  
Vol 111 (2) ◽  
Author(s):  
E. V. Ferapontov ◽  
M. V. Pavlov ◽  
Lingling Xue

AbstractWe investigate the integrability of Euler–Lagrange equations associated with 2D second-order Lagrangians of the form $$\begin{aligned} \int f(u_{xx},u_{xy},u_{yy})\ \mathrm{d}x\mathrm{d}y. \end{aligned}$$ ∫ f ( u xx , u xy , u yy ) d x d y . By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bao-ning Du ◽  
Min-xin Huang

Abstract We continue the study of a novel relation between quantum periods and TBA(Thermodynamic Bethe Ansatz)-like difference equations, generalize previous works to a large class of Calabi-Yau geometries described by three-term quantum operators. We give two methods to derive the TBA-like equations. One method uses only elementary functions while the other method uses Faddeev’s quantum dilogarithm function. The two approaches provide different realizations of TBA-like equations which are nevertheless related to the same quantum period.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 554
Author(s):  
Jiří Mazurek ◽  
Radomír Perzina ◽  
Jaroslav Ramík ◽  
David Bartl

In this paper, we compare three methods for deriving a priority vector in the theoretical framework of pairwise comparisons—the Geometric Mean Method (GMM), Eigenvalue Method (EVM) and Best–Worst Method (BWM)—with respect to two features: sensitivity and order violation. As the research method, we apply One-Factor-At-a-Time (OFAT) sensitivity analysis via Monte Carlo simulations; the number of compared objects ranges from 3 to 8, and the comparison scale coincides with Saaty’s fundamental scale from 1 to 9 with reciprocals. Our findings suggest that the BWM is, on average, significantly more sensitive statistically (and thus less robust) and more susceptible to order violation than the GMM and EVM for every examined matrix (vector) size, even after adjustment for the different numbers of pairwise comparisons required by each method. On the other hand, differences in sensitivity and order violation between the GMM and EMM were found to be mostly statistically insignificant.


Author(s):  
Ernesto Dufrechou ◽  
Pablo Ezzatti ◽  
Enrique S Quintana-Ortí

More than 10 years of research related to the development of efficient GPU routines for the sparse matrix-vector product (SpMV) have led to several realizations, each with its own strengths and weaknesses. In this work, we review some of the most relevant efforts on the subject, evaluate a few prominent routines that are publicly available using more than 3000 matrices from different applications, and apply machine learning techniques to anticipate which SpMV realization will perform best for each sparse matrix on a given parallel platform. Our numerical experiments confirm the methods offer such varied behaviors depending on the matrix structure that the identification of general rules to select the optimal method for a given matrix becomes extremely difficult, though some useful strategies (heuristics) can be defined. Using a machine learning approach, we show that it is possible to obtain unexpensive classifiers that predict the best method for a given sparse matrix with over 80% accuracy, demonstrating that this approach can deliver important reductions in both execution time and energy consumption.


2017 ◽  
Vol 43 (4) ◽  
pp. 1-49 ◽  
Author(s):  
Salvatore Filippone ◽  
Valeria Cardellini ◽  
Davide Barbieri ◽  
Alessandro Fanfarillo

Sign in / Sign up

Export Citation Format

Share Document