scholarly journals Attenuation Characterization of L(0,2) Guided Wave Mode through Numerical Analyses and Model Experiments with Buried Steel Pipe

2013 ◽  
Vol 27 (1) ◽  
pp. 16-23
Author(s):  
Juwon Lee ◽  
Won-Bae Na
Author(s):  
Longtao Li ◽  
Cunfu He ◽  
Bin Wu ◽  
Ying Li ◽  
Xiuyan Wang

Ultrasonic guided waves are used for the rapid testing of a steel pipe (O.D 70 mm, I.D 63 mm, 2544 mm long). The non-axisymmetric transducer ring (arc) is put on one end of the pipe to excite and receive the guided wave in the pipe. An artificial hole of 1 mm diameter can not be found by conventional axisymmetric end loading transducer. However, the non-axisymmetric transducer ring (arc), compared with the axisymmetric transducer ring, is very sensitive to the artificial hole when The middle point (MP) of the transducer arcs coincided with the center of the artificial hole on the cross section of the pipe. The results show that the non-axisymmetric end loading technology can locate the crack or defect on the pipe not only in the axial direction but also in the circumferential direction.


Author(s):  
Jean-Luc Robyr ◽  
Mathieu Simon ◽  
Bernard Masserey ◽  
Paul Fromme

Abstract Thin monocrystalline silicon wafers are employed for the manufacture of solar cells with high conversion efficiency. Micro-cracks can be induced by the wafer cutting process, leading to breakage of the fragile wafers. High frequency guided waves allow for the monitoring of wafers and detection and characterization of surface defects. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the guided wave mode and propagation direction relative to the crystal orientation. Selective excitation of the first anti-symmetric A0 wave mode at 5 MHz center frequency was achieved experimentally using a custom-made wedge transducer. Strong wave pulses with limited beam skewing and widening were measured using non-contact laser interferometer measurements. This allowed the accurate characterization of the Lamb wave propagation and scattering at small artificial surface defects with a size of less than 100 µm. The surface extent of the defects of varying size was characterized using an optical microscope. The scattered guided wave field was evaluated, and characteristic parameters extracted and correlated to the defect size, allowing in principle detection of small defects. Further investigations are required to explain the systematic asymmetry of the guided wave field in the vicinity of the indents.


2013 ◽  
Vol 113 (14) ◽  
pp. 144904 ◽  
Author(s):  
Pasi Karppinen ◽  
Ari Salmi ◽  
Petro Moilanen ◽  
Timo Karppinen ◽  
Zuomin Zhao ◽  
...  

2013 ◽  
Vol 330 ◽  
pp. 504-509
Author(s):  
Yang Zheng ◽  
Jin Jie Zhou ◽  
Hui Zheng

Although many imaging algorithms such as ellipse and hyperbola algorithm can roughly locate defects in large plate-like structures with sparse guided wave arrays, quantitative characterization of them is still a challenging problem, especially for those small defects known as subwavelength defects. Scattering signals of defects contain abundant information so that can be used to evaluate defects. A defects recognition method using the S-matrix (scattering matrix) was presented. S-matrices of hole and crack with S0 mode incident were experimentally measured. The results show that defects can be recognized from the morphology of 2D S-matrix chart. This method has great potential to achieve more specific parameters of small defects with sparse guided wave arrays.


Abstract. Micro-damages such as pores, closed delamination/debonding and fiber/matrix cracks in carbon fiber reinforced plastics (CFRP) are vital factors towards the performance of composite structures, which could collapse if defects are not detected in advance. Nonlinear ultrasonic technologies, especially ones involving guided waves, have drawn increasing attention for their better sensitivity to early damages than linear acoustic ones. The combination of nonlinear acoustics and guided waves technique can promisingly provide considerable accuracy and efficiency for damage assessment and materials characterization. Herein, numerical simulations in terms of finite element method are conducted to investigate the feasibility of micro-damage detection in multi-layered CFRP plates using the second harmonic generation (SHG) of asymmetric Lamb guided wave mode. Contact acoustic nonlinearity (CAN) is introduced into the constitutive model of micro-damages in composites, which leads to the distinct SHG compared with material nonlinearity. The results suggest that the generated second order harmonics due to CAN could be received and adopted for early damage evaluation without matching the phase of the primary waves.


Sign in / Sign up

Export Citation Format

Share Document